Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Uniqueness of positive radial solutions for a class of semipositone problems on the exterior of a ball

Eunkyung Ko^a, Mythily Ramaswamy^a, R. Shivaji^{b,*}

^a TIFR CAM, P. Bag No. 6503, Bangalore, 560065, India

^b Department of Mathematics and Statistics, University of North Carolina at Greensboro, NC 27412, USA

ARTICLE INFO

Article history: Received 20 July 2014 Available online 5 October 2014 Submitted by J. Shi

Keywords: Uniqueness Semipositone Nonlinear boundary conditions Exterior domain

ABSTRACT

We study positive radial solutions to: $-\Delta u = \lambda K(|x|)f(u)$; $x \in \Omega_e$, where $\lambda > 0$ is a parameter, $\Omega_e = \{x \in \mathbb{R}^N : |x| > r_0, r_0 > 0, N > 2\}$, Δ is the Laplacian operator, $K \in C([r_0, \infty), (0, \infty))$ satisfies $K(r) \leq \frac{1}{r^{N+\mu}}$; $\mu > 0$ for $r \gg 1$ and $f \in C^1([0, \infty), \mathbb{R})$ is a concave increasing function satisfying $\lim_{s\to\infty} \frac{f(s)}{s} = 0$ and f(0) < 0 (semipositone). We are interested in solutions u such that $u \to 0$ as $|x| \to \infty$ and satisfy the nonlinear boundary condition $\frac{\partial u}{\partial \eta} + \tilde{c}(u)u = 0$ if $|x| = r_0$ where $\frac{\partial}{\partial \eta}$ is the outward normal derivative and $\tilde{c} \in C([0, \infty), (0, \infty))$ is an increasing function. We will establish the uniqueness of positive radial solutions for large values of the parameter λ .

@ 2014 Elsevier Inc. All rights reserved.

1. Introduction

We consider the steady state reaction diffusion equation on the exterior of a ball in \mathbb{R}^N ; N > 2 with nonlinear boundary conditions on the interior boundary. Namely, we study positive radial solutions to:

$$\begin{cases} -\Delta u = \lambda K(|x|) f(u), & x \in \Omega_e, \\ \frac{\partial u}{\partial \eta} + \tilde{c}(u)u = 0, & \text{if } |x| = r_0 \\ u \to 0, & \text{if } |x| \to \infty, \end{cases}$$
(1.1)

where $\lambda > 0$ is a parameter, $\Omega_e = \{x \in \mathbb{R}^N : |x| > r_0, r_0 > 0, N > 2\}$, Δ is the Laplacian operator, $K \in C([r_0, \infty), (0, \infty))$ satisfies $K(r) \leq \frac{1}{r^{N+\mu}}; \mu > 0$ for $r \gg 1, \frac{\partial}{\partial \eta}$ is the outward normal derivative and $\tilde{c} \in C([0, \infty), (0, \infty))$ is an increasing function. Here $f : [0, \infty) \to \mathbb{R}$ is a C^1 function. The case when f(0) < 0is referred to in the literature as semipositone problems and has been well documented (see [4,14]) that the

* Corresponding author.

http://dx.doi.org/10.1016/j.jmaa.2014.09.058 0022-247X/© 2014 Elsevier Inc. All rights reserved.

E-mail addresses: ekkol115@gmail.com (E. Ko), mythily@math.tifrbng.res.in (M. Ramaswamy), shivaji@uncg.edu (R. Shivaji).

study of positive solutions to such problems is considerably more challenging than in the case f(0) > 0 (positone problems). For a rich history on semipositone problems with Dirichlet boundary conditions on bounded domains, see [1-3,6,7,9-11,15] and on domains exterior to a ball, see [8,13,16]. Such nonlinear boundary conditions occur very naturally in applications (see [12] for a detailed description in a model arising in combustion theory). Recently, the existence of a radial positive solution for (1.1) when $\lambda \gg 1$ has been established in [5], via the method of sub–super solutions. Here we discuss the uniqueness of this radial solution when some additional assumptions hold.

In [8], the authors study such a uniqueness result for the case of Dirichlet boundary condition on $|x| = r_0$. Our focus in this paper is to consider the uniqueness result for semipositone problem when a class of nonlinear boundary condition is satisfied at $|x| = r_0$. The fact that we have no longer a fixed value of u on $|x| = r_0$ results in quite a challenge in extending the results in [8]. Namely, we need to establish a detailed behavior of u at $|x| = r_0$ to achieve our goal.

Note that the change of variable r = |x| and $s = (\frac{r}{r_0})^{2-N}$ transforms (1.1) into the following boundary value problem (see Appendix 8.1 in [5] for details):

$$\begin{cases} -u''(t) = \lambda \tilde{h}(t) f(u(t)), & t \in (0,1), \\ \frac{(N-2)}{r_0} u'(1) + \tilde{c}(u(1)) u(1) = 0, \\ u(0) = 0, \end{cases}$$
(1.2)

where $\tilde{h}(t) = \frac{r_0^2}{(2-N)^2} t^{\frac{-2(N-1)}{N-2}} K(r_0 t^{\frac{1}{2-N}})$. We will only assume $K(r) \leq \frac{1}{r^{N+\mu}}$ for $r \gg 1$ and for some $\mu \in (0, N-2)$. Then, $\tilde{h} \in C^1((0, 1], (0, \infty))$ could be singular at 0. If $\mu \geq N-2$, \tilde{h} will be nonsingular at 0 and it will be an easier case to study. Note that $\inf_{t \in (0,1]} \tilde{h}(t) > 0$, and there exists a constant \tilde{d} such that $\tilde{h}(t) \leq \frac{\tilde{d}}{t^{\alpha}}$ for all $t \in (0, \tilde{\epsilon})$ where $\tilde{\alpha} = \frac{N-2-\mu}{N-2}$ and $\tilde{\epsilon} \approx 0$.

In view of the above discussion, we study positive solutions in $C^2(0,1) \cap C^1[0,1]$ to the following boundary problem:

$$\begin{cases}
-u''(t) = \lambda h(t) f(u(t)), & t \in (0, 1), \\
u'(1) + c(u(1)) u(1) = 0, \\
u(0) = 0,
\end{cases}$$
(1.3)

where $c \in C([0,\infty), (0,\infty))$ is an increasing function and $h \in C^1((0,1], (0,\infty))$ satisfying:

(H1) <u>h</u> := $\inf_{t \in (0,1]} h(t) > 0;$

(H2) there exists a constant d > 0 such that $h(t) \leq \frac{d}{t^{\alpha}}$ for all $t \in (0, \epsilon)$ where $\alpha \in (0, 1)$ and $\epsilon \approx 0$;

(H3) h is decreasing.

We consider classes of C^1 reaction terms $f: [0, \infty) \to \mathbb{R}$ satisfying the following:

(F1) f(0) < 0 and $\lim_{s\to\infty} \frac{f(s)}{s} = 0$; (F2) f is increasing and $\lim_{s\to\infty} f(s) = \infty$; (F3) f is concave on $[0, \infty)$.

We establish:

Theorem 1.1. Assume (H1)–(H3) and (F1)–(F3). Then (1.3) has a unique positive solution for all λ sufficiently large.

Download English Version:

https://daneshyari.com/en/article/4615460

Download Persian Version:

https://daneshyari.com/article/4615460

Daneshyari.com