
The Journal of Systems and Software 115 (2016) 82–101

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Towards semi-automated assignment of software change requests

Yguaratã Cerqueira Cavalcanti a,∗, Ivan do Carmo Machado b,
Paulo Anselmo da Motal S. Neto c, Eduardo Santana de Almeida b

a Brazilian Federal Data Processing Service (SERPRO), Florianópols, Brazil
b Computer Science Department, Federal University of Bahia, Salvador, Brazil
c Center for Informatics, Federal University of Pernambuco, Recife, Brazil

a r t i c l e i n f o

Article history:

Received 29 April 2015

Revised 18 December 2015

Accepted 25 January 2016

Available online 9 February 2016

Keywords:

Software maintenance and evolution

Change request management

Automatic change request assignment

Bug triage

a b s t r a c t

Change Requests (CRs) are key elements to software maintenance and evolution. Finding the appropriate

developer to a CR is crucial for obtaining the lowest, economically feasible, fixing time. Nevertheless, as-

signing CRs is a labor-intensive and time consuming task. In this paper, we report on a questionnaire-

based survey with practitioners to understand the characteristics of CR assignment, and on a semi-

automated approach for CR assignment which combines rule-based and machine learning techniques.

In accordance with the results of the survey, the proposed approach emphasizes the use of contextual

information, essential to effective assignments, and puts the development team in control of the assign-

ment rules, toward making its adoption easier. The assignment rules can be either extracted from the

assignment history or created from scratch. An empirical validation was performed through an offline

experiment with CRs from a large software project. The results pointed out that the approach is up to

46.5% more accurate than other approaches which relying solely on machine learning techniques. This

indicates that a rule-based approach is a viable and simple method to leverage CR assignments.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Change Request (CR) are software artifacts that describe defects

to be fixed or enhancements to be implemented in a software sys-

tem (Cavalcanti et al., 2013a). CRs are managed with the support

of a CR repository software, such as Bugzilla (Bugzilla, 2013) and

Mantis (Mantis Bug Tracker, 2013). These repositories play a funda-

mental role in the software maintenance process, being a common

place for communication and coordination among different stake-

holders (Bertram et al., 2010). Indeed, the CR artifact is the pri-

mary unit of work in many software development projects (Anvik

and Murphy, 2007).

The task of assigning a CR, also known as CR triage, consists of

selecting the most suitable software developer to handle a given

CR. Generally, such a developer is the one who has enough ex-

pertise to handle the issues reported in the CR (Aljarah et al.,

2011). In addition, the assignment decision must take into account

the developer’s workload, availability, and the CR priority, in order

to obtain the lowest, economically feasible time to fix (Di Lucca

et al., 2002; Hosseini et al., 2012; Cavalcanti et al., 2013c). Thus,

∗ Corresponding author. Tel.: +55 4896627336.

E-mail addresses: yguarata@gmail.com (Y.C. Cavalcanti), ivanmachado@dcc.

ufba.br (I.d.C. Machado), pamsn@cin.ufpe.br (P.A.d.M.S. Neto), esa@cin.ufpe.br (E.S.d.

Almeida).

this task requires considerable knowledge of the project, and good

communication skills to negotiate with the involved stakehold-

ers (Cavalcanti et al., 2013c).

Assigning CRs to developers is both labor-intensive and time

consuming, as it is usually regarded as a manual handling

task (Anvik et al., 2006; Jeong et al., 2009). Depending on the soft-

ware project, the number of new CRs can vary from dozens to hun-

dreds in a single day (Cavalcanti et al., 2013a). As a consequence,

the greater the number of CRs that are opened, the more complex

the problem becomes.

Several automated approaches have been proposed to overcome

the problem of CR assignment by using machine learning tech-

niques. Some of these approaches are based on the hypothesis that

the most suitable developer for a new CR is the one who has al-

ready solved similar CRs in the past (Di Lucca et al., 2002; Cubranic

and Murphy, 2004; Anvik et al., 2006; Ahsan et al., 2009b; Jeong

et al., 2009; Lin et al., 2009; Rahman et al., 2009). Other ap-

proaches consider that an appropriate developer can be found by

looking at past CRs and data from version control systems (Canfora

and Cerulo, 2006; Ahsan et al., 2009a; Matter et al., 2009; Kagdi

et al., 2012) or source code (Linares-Vásquez et al., 2012). In gen-

eral, these approaches use machine learning techniques to auto-

matically suggest a list of appropriate developers for a new incom-

ing CR.

http://dx.doi.org/10.1016/j.jss.2016.01.038

0164-1212/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2016.01.038
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.01.038&domain=pdf
mailto:yguarata@gmail.com
mailto:ivanmachado@dcc.ufba.br
mailto:pamsn@cin.ufpe.br
mailto:esa@cin.ufpe.br
http://dx.doi.org/10.1016/j.jss.2016.01.038


Y.C. Cavalcanti et al. / The Journal of Systems and Software 115 (2016) 82–101 83

Fig. 1. CR workflow adapted from Ihara et al. (2009).

Despite the number of proposals, there is no empirical evidence

about their applicability to real-world environments. To the best of

our knowledge, most practitioners are still assigning CRs manually.

Current approaches have not been adopted because of two main

problems, as follows (Cavalcanti et al., 2014):

• They were designed to be autonomous, so that the software an-

alysts do not have the control of the approach; this is, they can-

not modify the behavior of the approach. Without such control,

in turn, the approach cannot be properly calibrated. As a con-

sequence, if its performance is not satisfactory, it is simply dis-

carded.
• These approaches lack contextual information necessary to as-

sign CRs properly. Software development companies might be

highly dynamic, in terms of involved staff, e.g., developers move

from project to project; developers can be hired/fired during

project development; or they can even take a vacation or a day

off. This dynamic influences the assignment of CRs. Thus, con-

textual information impacts the performance of automated ap-

proaches.

In this paper, we present a configurable approach developed to

assign CRs which enables software analysts to control its behav-

ior, as well as, it provides a mean to support contextual informa-

tion necessary to perform effective assignments in dynamic envi-

ronments. The approach relies on Rule-Based Expert System (RBES)

and machine learning techniques.

The main ideas for this work come from our past three publi-

cations (Cavalcanti et al., 2013b, 2013c, 2014). In Cavalcanti et al.

(2014), our approach was introduced but with less details. Thus

we added more information about the approach, such as its archi-

tecture, implementation, and machine learning techniques. From

Cavalcanti et al. (2013c), which is a survey with software devel-

opers, we selected the specifics results that helped us to propose

the semi-automated solution. Then, we used results from the work

(Cavalcanti et al., 2013b), which is an extensive mapping study on

CR repositories issues, to elaborate the related work specific to the

topic of assigning CRs.

Besides putting together these work, we also provided an ex-

tended experimental study of the proposed approach. According to

the experiment performed, which compared our approach against

other solution based solely on machine learning algorithm, we ob-

served that ours improved the accuracy of assignments by 46.5%.

The remainder of this paper is organized as follows: Section 2

provides some background on CR management; in Section 3

we present the questionnaire-based survey; Section 4 presents

the proposed approach to semi-automate the assignment of

CRs; Section 5 describes the empirical validation performed to

evaluate the proposed approach; Section 6 describes related work;

and Section 7 concludes this work.

2. Change request management

A CR is a software artifact that describes a defect to be fixed,

an adaptive or perfective change, or a new functionality to be im-

plemented in a software system (Cavalcanti et al., 2013a). They are

managed with the support of specific software systems which we

simply refer as CR repositories. Examples of such repositories are

Bugzilla (Bugzilla, 2013), Mantis (Mantis Bug Tracker, 2013), Red-

Mine (Redmine, 2013), and Trac (The Trac Project, 2013). The CR

repositories play a fundamental role in the maintenance process,

being actually a focal point for communication and coordination

in the software project (Bertram et al., 2010). In fact, the CR ar-

tifact is the primary unit of work in many software development

projects (Anvik and Murphy, 2007).

The information carried in CRs is an important project docu-

mentation and history, since CRs hold healthy information about

software evolution and maintenance activities. Indeed, during the

life cycle of a given CR, it is common for discussions to take

place concerning fixing alternatives and software design consider-

ations (Bertram et al., 2010).

When a new CR is created, it is supposed to follow a spe-

cific workflow, which is implemented as a state machine in the

CR repository. Fig. 1 shows a generic workflow for the purpose

of explanation, adapted from Ihara et al. (2009). It is worth to

mention that most CR repositories enable customizations, to meet

project needs, although the one showed in Fig. 1 is very represen-

tative (Ihara et al., 2009). The workflow encompasses three phases,

as shown in Fig. 1: Untreated Phase, Modification Phase, and Verifi-

cation Phase.

Initially, in the Untreated Phase, the CR is created and reported

in the project CR repository. More specifically, each CR stores dif-

ferent information fields which are essential to understand and im-

plement the request. For instance, it stores a description of the

change, the type of the change (e.g., defect or enhancement), the

target component impacted by the change, the version of the soft-

ware, among many others that can be defined in the CR repository.

In the Modification Phase, the CR can be either accepted or not,

and the discussion on the CR acceptance and implementation takes

place. A CR repository usually supports the discussion, by enabling

submitters to use a comment field to enter messages regarding the

CR under analysis. Notice that it is not necessary to have a discus-

sion before deciding whether the CR will or will not be accepted.

There are many reasons for not accepting a CR, such as: poor de-

scriptions, redundancy, i.e., whenever the reported issue refers to

an existing CR, or the reported CR is not planned to be fixed, etc.



Download English Version:

https://daneshyari.com/en/article/461547

Download Persian Version:

https://daneshyari.com/article/461547

Daneshyari.com

https://daneshyari.com/en/article/461547
https://daneshyari.com/article/461547
https://daneshyari.com

