
The Journal of Systems and Software 115 (2016) 102–110

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Modeling and analysis of reliability of multi-release open source

software incorporating both fault detection and correction processes

Jianfeng Yang

a , Yu Liu

b , ∗, Min Xie

b , Ming Zhao

c

a Faculty of Information Engineering, Guizhou Institute of Technology, Guiyang, China
b Department of Systems Engineering and Engineering Management, City University of Hong Kong, Hong Kong, China
c Faculty of Engineering and Sustainable Development, University of Gävle, Gävle, Sweden

a r t i c l e i n f o

Article history:

Received 6 September 2015

Revised 22 December 2015

Accepted 14 January 2016

Available online 6 February 2016

Keywords:

Software reliability

Multiple upgrading

Fault correction process

a b s t r a c t

Large software systems require regular upgrading that tries to correct the reported faults in previous

versions and add some functions to meet new requirements. It is thus necessary to investigate changes

in reliability in the face of ongoing releases. However, the current modeling frameworks mostly rely on

the idealized assumption that all faults will be removed instantaneously and perfectly. In this paper, the

failure processes in testing multi-release software are investigated by taking into consideration the delays

in fault repair time based on a proposed time delay model. The model is validated on real test datasets

from the software that has been released three times with new features. A comprehensive analysis of

optimal release times based on cost-efficiency is also provided, which could help project managers to

determine the best time to release the software.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The software industry is growing rapidly and has become very

competitive. As a result, many software developers are cutting back

their schedules to ensure prompt delivery and developing new fea-

tures to keep their products competitive. This is especially true

for large and complex software. After a release, reported faults

in previous versions will be removed and new functions may be

designed to meet new requirements in new versions. Developers

generally pay greater attention to balancing competition in the

market, and thus risk quality because of the short software life-

cycle. The upgradation process constitutes a challenge for software

companies looking to produce highly reliable software and ensure

the release time is on schedule.

Over the past four decades, researchers have studied a variety

of methods to assess software reliability. One of the most widely

investigated and applied of those methods is the software reliabil-

ity growth model (SRGM) (Lyu, 2007; Amin et al., 2013; Febrero

et al., 2014; Yamada, 2014). Most SRGMs utilize the fault data col-

lected during the test process to describe the stochastic behavior

of the software fault detection process (FDP) with respect to time,

and it is reasonable to assume that the fault counts in each time

interval are mutually independent of each other (Amin et al., 2013).

∗ Corresponding author. Tel.: +852 56286295.

E-mail address: lyu.12@my.cityu.edu.hk (Y. Liu).

Non-homogeneous Poisson process (NHPP) model is considered as

one of the most effective models (Goel and Okumoto, 1979; Lyu,

1996; Ohishi et al., 2009). They have been successfully applied in

many software projects to manage tests and predict operational re-

liability (Jeske and Zhang, 2007; Lin and Huang, 2008; Rana et al.,

2014). They have also been utilized in making critical decisions,

such as those involved in cost-benefit analysis, resource allocation,

and release-time determination (Peng et al., 2013; Park and Baik,

2015; Wang et al., 2015).

Furthermore, a number of specific SRGMs have been proposed

for investigating the reliability of Open Source software (OSS),

which is a growing area of software development and applica-

tions. For example, Tamura and Yamada (2013) propose a method

of software reliability assessment for the embedded OSS with flex-

ible hazard rate modeling. Pachauri et al. (2013) blended fuzzy set

theory with software reliability measurement and total cost anal-

ysis, and Gratus and Pratibha (2013) proposed an approach for

carrying out pre-statistical data analyses based on assessment of

software’s reliability metrics. Luan and Huang (2014) proposed an

improved Pareto distribution model for analyzing the failure pro-

cess, although their method is confined to ungrouped data.

In this paper, the failure process in testing multi-release soft-

ware is further explored by taking into consideration a delay in

the fault repair time based on the time-delay model proposed by

Wu et al. (2007) . Both fault-correction and detection processes are

considered. It is assumed that the faults in a new version com-

prise both undetected faults in a previous version and new faults

http://dx.doi.org/10.1016/j.jss.2016.01.025

0164-1212/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2016.01.025
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.01.025&domain=pdf
mailto:lyu.12@my.cityu.edu.hk
http://dx.doi.org/10.1016/j.jss.2016.01.025

J. Yang et al. / The Journal of Systems and Software 115 (2016) 102–110 103

introduced during the development process of the new version. A

framework for assessing the expected number of remaining faults

in each version is proposed and the optimal release time for each

version is also investigated.

The remainder of this paper is organized as follows. Section 2

outlines the proposed framework for multi-release software mod-

eling. In Section 3 , the parameter estimation with Least Square Es-

timation (LSE) is developed and the optimal release strategy for

such software is discussed. Section 5 demonstrates the application

of the proposed models with a three-release dataset collected from

a practical OSS test process and presents the results of optimal re-

lease time analysis. Finally, the conclusion is given in Section 6 .

2. Literature review and further discussion of the multi-release

problems

2.1. Modeling the multi-release situation

Most of the existing SRGMs focus on the software development

process of only a single version. It is thus necessary to investi-

gate changes in reliability arising from ongoing releases, which is

a rather complex problem as usually there are many reasons for

a new release. Several studies have been carried out in this regard

in the literature. For example, Smidts et al. (1998) applied software

failure data from a previous release to perform reliability estima-

tion on a current release, and developed an early prediction model

with a proposed Bayes framework using subjective and/or objective

data from older projects. Hu et al. (2011) considered a scenario in

which a software development team develops, tests, and releases

software version by version, and proposed a number of practical

assumptions. Li et al. (2011) later proposed a model that focuses

on OSS and regards changes in testing effort with time as a hump-

shaped curve. Recently, Pachauri et al. (2015) proposed a modeling

framework considering the inflection S-shaped fault reduction fac-

tor and extended this model into multi-release software.

Many other factors, such as fault severities and test resources,

are also incorporated into the modeling of multi-release software.

Different severities describing the difficulty of correcting faults are

considered during the upgrade process by Garmabaki et al. (2011) ,

who assumed that the severity of the dormant faults in previous

versions may change in subsequent versions. Kapur et al. (2012)

discovered that some dormant faults in previously released ver-

sions can be removed in the tests of subsequent versions, and pro-

posed a chain of SGRMs that take into account testing resources

with a Cobb Douglas production function to optimize upgrade

modeling and release time prediction.

2.2. Modeling fault correction delay

Most of the aforementioned modeling frameworks operate un-

der the idealized assumptions that all faults are removed instanta-

neously and perfectly and that the expected number of removed

faults is the same as the expected number of detected faults.

In fact, time is always required for removal, and the expected

number of removed faults at any given time is smaller than the

expected number of detected faults (Gokhale et al., 2004). Accord-

ingly, some researchers also take into account the fault correction

process (FCP) and use corrected fault data to represent the cor-

rection time delay. Modeling both FDP and FCP requires more in-

formation from software testing records but improves estimation

and prediction results. Schneidewind proposed an approach to FCP

modeling that uses a constant delayed FDP (Schneidewind, 2001).

He assumed that the rate of fault correction is proportional to the

rate of failure detection.

However, because the FCP is heavily dependent on the FDP

and there are many faults that have been detected but are still

waiting for correction in some applications, the model usually

underestimates the remaining faults in the code. Lo and Huang

(2006) proposed an integrative method for analyzing the detec-

tion and correction processes using a differential equation. Wu et

al. (2007) extended Schneidewind’s model to a continuous version

by substituting a time-dependent delay function for constant de-

lay. Based on the aforementioned NHPP-based FDP and FCP mod-

eling framework, both LSE and MLE (maximum likelihood estima-

tion) approaches have been proposed. In addition, Hu et al. (2007)

developed a neural networks configuration approach with an ex-

tra factor characterizing the dispersion of prediction repetitions

used to simultaneously model the FDP and FCP. Huang and Hung

(2010) later applied queuing models to describe the two processes

with multiple change points. Incorporating a testing effort function

and imperfect debugging, Peng et al. (2014) recently proposed a

framework for analyzing both processes. Recently, Gaver and Jacobs

(2014) proposed a queue model based on different failure mode as-

sumptions.

3. Multi-release modeling framework for FDP and FCP

3.1. Single-release modeling framework for FDP and FCP

For single-version software, the method of modeling FDP is like

the traditional NHPP SRGM in which the cumulative number of de-

tected faults, N (t), is assumed to follow a Poisson distribution with

mean value function (MVF) m d (t), i.e.,

P { N(t) = n } =

m

n
d
(t)

n !
e −m d (t) . (1)

According to the basic assumption of fault removal, the MVF

can be given by {

d m d (t)

dt
= λd (t) =

F ′ (t)

1 − F (t)
[a − m d (t)]

m d (0) = 0

, (2)

where λd (t) refers to the failure rate during the test process and

F (t) is a cumulative distribution function. In solving the above dif-

ferential equation, the MVF can be written as

m d (t) = aF (t) . (3)

When F (t) is assigned to an experiential distribution, it becomes

the well-known GO model (Goel and Okumoto, 1979):

m d (t) = a [1 − exp (−γ t)] . (4)

The fault correcting process can be modeled as a stochastic

time delay (obeys a random distribution of G (t)) of the FDP, and

then delayed failure rate (and fault correcting rate) λ∗
c and delayed

MVF m

∗
c are as follows:

λ∗
c =

{
λd (t − �t) , �t ≤ t

0 , �t > t
(5)

m

∗
c =

{
m d (t − �t) , �t ≤ t

0 , �t > t
(6)

According to the approach proposed by Dai et al. (2007) , λc (t)

can be the expectation of the delayed failure rate, that is,

λc (t) = E [λ∗
c] =

t ∫
0

λd (t − x) · g(x) dx (7)

Download English Version:

https://daneshyari.com/en/article/461548

Download Persian Version:

https://daneshyari.com/article/461548

Daneshyari.com

https://daneshyari.com/en/article/461548
https://daneshyari.com/article/461548
https://daneshyari.com

