
The Journal of Systems and Software 115 (2016) 111–129

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

A QoS-aware self-correcting observation based load balancer

Veerabhadra Rao Chandakanna

a , ∗, Valli Kumari Vatsavayi b

a CSE Department, MVGR College of Engineering Affiliated to JNTUK, Kakinada, Vizianagaram 535005, Andhra Pradesh, India
b Department of Computer Science & Systems Engineering, AU College of Engineering, Andhra University, Visakhapatnam 530 0 03, Andhra Pradesh, India

a r t i c l e i n f o

Article history:

Received 18 October 2015

Revised 9 January 2016

Accepted 29 January 2016

Available online 6 February 2016

Keywords:

Dynamic load balancing

Fault tolerance

Quality of Service

a b s t r a c t

Any service offered by a load balanced cluster is deployed on every member of the cluster. The Sliding

window based Self-Learning and Adaptive Load Balancer (SSAL) is an observation based load balancer

that optimizes throughput. It gives single point entry to access any service hosted on the cluster. This

paper proposes a QoS-aware and Self-correcting observation based Load Balancer (QSLB) that extends the

SSAL to (i) prevent the single point of failure of the load balancer, (ii) manage the cluster capacity, (iii)

support the QoS monitoring, and (iv) estimate the cluster capacity needed to meet the QoS benchmarks.

Redundant QSLBs collaborate to estimate the capabilities of the individual cluster members, share the

available cluster capacity, and monitor the QoS parameters. Two models to estimate the cluster capacity

needed to meet the QoS benchmarks are proposed. Experiments were conducted to test the QSLB’s fea-

tures. The experimental results confirmed that (i) the overhead to support these QSLB features is minimal,

(ii) the QSLBs retained their share of the cluster capacity even in dynamic environments, and (iii) using

the recommended cluster capacity improved the QoS met percentage. The proposed model improves fault

tolerance, assists in cluster capacity management, and monitors the QoS.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In our day to day, we use distributed applications such as

Gmail, Twitter, Facebook, WhatsApp, etc., without noticing that

several components running on a network of computers are col-

laborating (by exchanging messages) to fulfill our requests. Such

applications have huge computational demand and/or deal with

huge amount of data. They are usually run on datacenters, or sim-

ply on a set of tightly connected computers working together and

that can be logically treated as a single system. This computer clus-

ter needs a load balancing hardware or software to distribute the

requests efficiently. A load balanced cluster is an abstraction for a

set of identical servers, that host same set of services. A request

received by a load balancer can be served by any cluster mem-

ber. The services can be easily scaled by provisioning new clus-

ter members and adding them to the cluster. Although a cluster

can be formed by non-identical cluster members (that host dif-

ferent services), the load balancing and scaling implementations

become more complex, and it is not usually preferred to create

a load balanced cluster. All the cluster members must host the

same set of services (including their version numbers) to produce

∗ Corresponding author. Tel.: +91 9492826715.

E-mail addresses: cvrao1972@gmail.com (V.R. Chandakanna),

vallikumari@gmail.com (V.K. Vatsavayi).

consistent results. A simple load balanced cluster with a load bal-

ancer, two clusters (Cluster1 and Cluster2), and J2EE instances as

cluster members are shown in Fig. 1 . Chandakanna and Vatsavayi

(2014) proposed a framework (SACF) that keeps all the cluster

members of a load balanced cluster in sync all the time. A virtual

address is created to represent any member of a given load bal-

anced cluster. The end users use the virtual address when send-

ing their requests. Any request sent to the virtual address can be

served by any member of the load balanced cluster. A load bal-

ancer uses a load balancing algorithm to maximize the through-

put, or minimize the response time or overloading of any specific

server.

Failover capability is provided to a service by replicating the

service on multiple servers, and a load balancer that knows the set

of servers that replicated the session state of a given request. The

static load balancers assign the incoming requests to the servers

based on pre-known capability ratios of the servers. Load Bal-

ancers based on the static load balancing algorithms such as min–

min, min–max (Gopinath and Vasudevan, 2015) do not use the cur-

rent state of the cluster members to distribute the load. Some of

the dynamic load balancers periodically collect various attributes

like CPU speed, memory available, CPU busy time/idle time, queue

length, etc. to estimate the capabilities of the servers. The incom-

ing requests are distributed based on the assessed servers’ capabil-

ities. Such systems typically use a monitoring entity at each clus-

ter member to collect the performance attributes, and an analyzer

http://dx.doi.org/10.1016/j.jss.2016.01.042

0164-1212/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2016.01.042
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.01.042&domain=pdf
mailto:cvrao1972@gmail.com
mailto:vallikumari@gmail.com
http://dx.doi.org/10.1016/j.jss.2016.01.042

112 V.R. Chandakanna, V.K. Vatsavayi / The Journal of Systems and Software 115 (2016) 111–129

Fig. 1. J2EE clustered environment.

that analyzes the collected attributes and estimates the servers’

capabilities. Many dynamic load balancing algorithms based on the

Bio-inspired, Game Theory-Based, Genetic Algorithms, Reliability Fo-

cused Load Balancers, and Observation Based models are proposed in

the literature.

We define (i) a stable environment where the server capabili-

ties do not change overtime and the processing times of differ-

ent requests are similar and (ii) an unstable environment where

the server capabilities can change overtime and the processing

times of different requests can widely vary. Static load balancing

algorithms are well suited for the stable environments. Dynamic

load balancing algorithms are well suited for the unstable envi-

ronments. Most of the dynamic load balancing algorithms need to

manage monitoring software on every server and collect feedback

to know the state of the servers periodically to adjust the load dis-

tribution model. Observing the performance of the cluster mem-

bers is another way to estimate the cluster members’ capabilities.

This form of dynamic load balancing is simple, as it neither re-

quires managing the monitoring entity at each cluster member nor

the data collected from each cluster member to be sent to the an-

alyzer. The load balancers based on the Observation Based models

do not need explicit feedback from the cluster members to know

their current capabilities. They estimate cluster member capabil-

ities based on the observations made by the load balancer such

as the fast responding server, server with the least number of con-

nections, etc. Commercial products like Citrix NetScaler (Citrix.com,

2015) and Big-IP (F5.com, 2015) support dynamic load balancing

algorithms (citrix.com, 2015; Devcentral.f5.com, 2015) based on the

fast response and the least number of connections observed by the

load balancer. The Observation Based load balancers estimate the ca-

pabilities of a cluster member by using the observed response pro-

cessing times of the requests sent to the server and/or the number

of active connections currently made to the server. The quickest re-

sponse time based load balancer tracks the cluster member that is

currently producing the fastest response. An incoming request is

assigned to the fastest cluster member known at that point. The

minimum connections based load balancer keeps track of the num-

ber of active connections to each cluster member. An incoming

request is assigned to the cluster member with the least num-

ber of connections. For each cluster member, the lowest response

time and minimum connections (LRTM) model maintains two sepa-

rate ranking orders, one based on the number of active connections

and the other based on the average response time . An incoming re-

quest is assigned to the cluster member with the minimal total

rank value. Chandakanna and Vatsavayi (2015) proposed a Sliding

window based Self-learning and Adaptive Load balancer (SSAL), an

observation based load balancer that can produce optimal through-

put in both stable and unstable environments. The SSAL logically

divides time into fixed size feedback intervals, and the observed

performance of the cluster members in every feedback interval is

used to make a correction to the load distribution model. It assigns

enough requests to keep all the servers busy in every feedback in-

terval and makes a correction after every feedback interval. The

proposed architecture of the Sliding window based Self-Learning

and Adaptive Load Balancer (SSAL) is shown in Fig. 2 .

The SSAL is composed of a Request Handler , a Self-Learning

Scheduler (SLS), a set of Self-Learning Dispatchers (SLDs), an Input

Queue , and a set of Output Queues (one per server). The Request

Handler receives the incoming requests and adds them to the In-

put Queue. The Self-Learning Scheduler (SLS) logically divides the

time into fixed size intervals (feedback intervals). In each inter-

val, the SLS assigns batch size(BS) number of requests to all the

cluster members in proportion to the estimated capabilities of the

servers. After every feedback interval, the SLS makes an incremen-

tal correction to the assessed servers’ capabilities using the ob-

served cluster members’ performance in the previous interval. Each

SLD process the next request from its Output Queue by sending it

to its associated server and recording the performance of its server.

All the SLDs periodically report their performance observations to

the SLS.

1.1. Problem analysis

The end users do not have explicit knowledge about the servers

processing their requests. They send their requests to the SSAL

(load balancer) and the SSAL forwards the request to one of the

servers. When the SSAL is down, none of the user requests can be

processed, even though the servers are ready to process the re-

quests. This creates a single point of failure for the system. To pre-

vent the single point of failure, redundant load balancers (SSALs)

are used in practice. The issues created by running multiple SSALs

in parallel, additional features to enhance the SSAL are described

in the following sections.

1.1.1. Estimate the capabilities of the servers

The performance of the servers observed by each SSAL needs

to be periodically consolidated to estimate the overall capabili-

ties of the servers. A correction model that uses the information

Download English Version:

https://daneshyari.com/en/article/461549

Download Persian Version:

https://daneshyari.com/article/461549

Daneshyari.com

https://daneshyari.com/en/article/461549
https://daneshyari.com/article/461549
https://daneshyari.com

