Boundary concentrating solutions for an anisotropic planar nonlinear Neumann problem with large exponent

Yibin Zhang ${ }^{\text {a,* }}$, Qingkun Xiao ${ }^{\text {a }}$, Haitao Yang ${ }^{\text {b }}$
a College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
b Department of Mathematics, Zhejiang University, Hangzhou 310027, China

A R T I C L E I N F O

Article history:

Received 3 November 2014
Available online 21 January 2015
Submitted by M. del Pino

Keywords:

Boundary concentrating solutions
Anisotropic elliptic problem
Large exponent
Lyapunov-Schmidt reduction

A B S T R A C T

Let Ω be a bounded domain in \mathbb{R}^{2} with smooth boundary, we study the following anisotropic elliptic problem

$$
\begin{cases}-\nabla(a(x) \nabla u)+a(x) u=0 & \text { in } \Omega \\ u>0 & \text { in } \Omega \\ \frac{\partial u}{\partial \nu}=u^{p} & \text { on } \partial \Omega\end{cases}
$$

where ν denotes the outer unit normal vector to $\partial \Omega, p>1$ is a large exponent and $a(x)$ is a positive smooth function. We construct solutions of this problem which exhibit the accumulation of arbitrarily many boundary peaks at any isolated local maximum point of $a(x)$ on the boundary.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let Ω be a bounded domain in \mathbb{R}^{2} with smooth boundary. This paper is concerned with the analysis of solutions to the boundary value problem

$$
\begin{cases}-\nabla(a(x) \nabla u)+a(x) u=0 & \text { in } \Omega \tag{1.1}\\ u>0 & \text { in } \Omega \\ \frac{\partial u}{\partial \nu}=u^{p} & \text { on } \partial \Omega\end{cases}
$$

where ν denotes the outer unit normal vector to $\partial \Omega, p>1$ is a large exponent and $a(x)$ is a smooth function over $\bar{\Omega}$ satisfying $(H): 0<a_{1} \leq a(x) \leq a_{2}<+\infty$. Let us define the Rayleigh quotient

[^0]$$
I_{p}(u)=\frac{\int_{\Omega} a(x)\left(|\nabla u|^{2}+u^{2}\right)}{\left(\int_{\partial \Omega} a(x)|u|^{p+1}\right)^{\frac{2}{p+1}}} \quad \text { for any } u \in H^{1}(\Omega) \backslash\{0\},
$$
and set
$$
S_{p}=\inf _{u \in H^{1}(\Omega) \backslash\{0\}} I_{p}(u) .
$$

From the property of $a(x)$ in (H) and the compactness of the trace Sobolev embedding $H^{1}(\Omega) \hookrightarrow L^{p+1}(\partial \Omega)$, standard variational method shows that some solutions of (1.1) can be obtained as appropriately scaled extremals of S_{p}. They are known as least energy solutions of problem (1.1).

Now, if we let $a(x)$ be a constant, then Eq. (1.1) turns to be the following isotropic problem

$$
\begin{cases}-\Delta u+u=0 & \text { in } \Omega, \tag{1.2}\\ u>0 & \text { in } \Omega, \\ \frac{\partial u}{\partial \nu}=u^{p} & \text { on } \partial \Omega .\end{cases}
$$

Recently, Takahashi in [11] studied the asymptotic behavior of least energy solutions of (1.2) as the nonlinear exponent p tends to infinity. It was proved that the least energy solutions remain bounded uniformly with respect to p and develop one peak on the boundary. The location of this blow-up point is associated with a critical point of the Robin function $H(x, x)$ on the boundary, where H is the regular part of the Green function of the corresponding linear Neumann problem. More precisely, the Green function $G(x, y)$ is the solution of the problem

$$
\begin{cases}-\Delta_{x} G(x, y)+G(x, y)=0, & x \in \Omega \\ \frac{\partial G}{\partial \nu_{x}}(x, y)=2 \pi \delta_{y}(x), & x \in \partial \Omega\end{cases}
$$

and $H(x, y)$ is the regular part defined as $H(x, y)=G(x, y)+2 \log |x-y|$. In $[2,11]$ the authors conjectured that the limit problem of (1.2) is

$$
\begin{cases}\Delta v=0 & \text { in } \mathbb{R}_{+}^{2}, \tag{1.3}\\ \frac{\partial v}{\partial \nu}=e^{v} & \text { on } \partial \mathbb{R}_{+}^{2}, \\ \int_{\partial \mathbb{R}_{+}^{2}} e^{v}<+\infty, & \end{cases}
$$

and $\lim _{p \rightarrow+\infty}\left\|u_{p}\right\|_{L^{\infty}(\partial \Omega)}=\sqrt{e}$ holds true at least for least energy solutions u_{p} of (1.2), where \mathbb{R}_{+}^{2} denotes the upper half-plane $\left\{\left(x_{1}, x_{2}\right): x_{2}>0\right\}$ and ν the outer unit normal vector to $\partial \mathbb{R}_{+}^{2}$. It is necessary to point out that the results in $[7,8,17]$ imply that problem (1.3) possesses exactly a two-parameter family of solutions

$$
\begin{equation*}
v_{t, \mu}\left(x_{1}, x_{2}\right)=\log \frac{2 \mu}{\left(x_{1}+t\right)^{2}+\left(x_{2}+\mu\right)^{2}}, \tag{1.4}
\end{equation*}
$$

where μ is a positive number and $t \in \mathbb{R}$.
However, problem (1.2) may have solutions with an arbitrarily large number of boundary peaks, as shown by Castro in [2]. Indeed, he proved that given any integer $m \geq 1$, problem (1.2) has at least two families of solutions u_{p}, each of them satisfying

https://daneshyari.com/en/article/4615495

Download Persian Version:

https://daneshyari.com/article/4615495

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: yibin10201029@njau.edu.cn (Y. Zhang), xiaoqk@njau.edu.cn (Q. Xiao), htyang@css.zju.edu.cn (H. Yang).
 http://dx.doi.org/10.1016/j.jmaa.2015.01.042
 0022-247X/© 2015 Elsevier Inc. All rights reserved.

