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1. Statement of the problem and results

We continue our analysis of the inverse problem of determining the scalar potential ¢ : {2 — R in
an unbounded quantum cylindrical domain {2 = w X R, where w is a connected bounded open subset of
R"~1 n > 2, with no less than C?-boundary dw, from partial Neumann data. This may be equivalently
reformulated as to whether the electrostatic disorder occurring in {2, modelling an idealized straight carbon
nanotube, can be retrieved from the partial boundary observation of the quantum wave propagating in (2.
We refer to [7, §1.2] for the discussion on the physical motivations and the relevance of this model. Namely
we seek stability in the identification of g from partial Neumann measurement of the solution u to the
following initial boundary value problem

—iw' —Au+qu=0, inQ:=(0,T)x
u(0,2) = up(x), x €S (1.1)
u(t,x) = g(t, x), (t,x) € X :=(0,T) x I.

Here T > 0 is fixed, I :== dw x R and 9/t is denoted by ’. Since I" is unbounded we make the boundary
condition in the last line of (1.1) more explicit. Writing  := (2, x,,) with 2’ := (z1,...,2,-1) € w for every
x € {2 we extend the mapping

Cs°((0,T) x Ry H*(w)) — L2((0,T) x R; H¥?(w))
v [(t,xn) € (0,T) x R w(t, ~7xn)‘3w],

to a bounded operator from L?((0,T) x R; H?(w)) into L?((0,T) x R; H*/?(dw)), denoted by 7. Then for
every u € C°([0,T]; H?(£2)) the above mentioned boundary condition reads you = g.
Throughout the entire paper we choose

g :=7Go, with Go(t,x) := up(z) + it(A — go)uo(x), (t,z) € Q, (1.2)

where go = go(x) is a given scalar function we shall make precise below.

In the particular case where ¢ is a priori known outside some given compact subset of {2 and on the
boundary I'; it is shown in [7] that the scalar potential may be Lipschitz stably retrieved from one partial
Neumann observation of the solution to (1.1) for suitable initial and boundary conditions ug and g. This
result is similar to [2, Theorem 1], which was derived by Baudouin and Puel for the same operator but
acting in a bounded domain. The main technical assumption common to [2,7] is that

ue C'([0,T]; L>(£2)). (1.3)

In this paper we pursue two main goals. First we want to analyze the direct problem associated to
(1.1)-(1.2) in order to exhibit sufficient conditions on ¢ and wg ensuring (1.3). Second, we aim to weaken
the compactness condition imposed in [7] on the support of the unknown part of ¢, in the inverse problem
of determining the scalar potential appearing in (1.1) from one partial Neumann observation of u.

The following result solves the direct problem associated to (1.1)—(1.2). Here and in the remaining part
of this text we note ||wl|; 0, j € N, for the usual H7-norm of w in any subset O of R™, m € N* := {1,2,.. .},
where H(Q) stands for L%(O).

Theorem 1.1. Let k > 2, assume that Ow is C?* and pick

(g0, u0) € (W(2) N C**- V(25 R)) x HAHD(02),
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