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This paper is concerned with the Cauchy problem of the three-dimensional nematic 
liquid crystals. We establish the global well-posedness and time decay rates of the 
classical solutions with smooth initial data which are of small energy by using Fourier 
splitting technique and pure energy method.
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1. Introduction

In this paper, we are interested in the following hydrodynamic system modeling the flow of the nematic 
liquid crystal materials in R3:

ut + u · ∇u + ∇π = μΔu− λ∇d · Δd, (1.1)

dt + u · ∇d = ν
(
Δd + |∇d|2d

)
, (1.2)

div u = 0, (1.3)

(u, d)(x, 0) = (u0, d0)(x), |d0| = 1. (1.4)

Here u : R3× [0, ∞) → R3 is the velocity field, π : R3 × [0, ∞) → R is the pressure, and d : R3 × [0, ∞) → S2

(the unit sphere in R3, i.e. |d| = 1) represents the averaged macroscopic/continuum molecular orientations. 
The positive constants μ, λ and ν represent viscosity, the competition between kinetic energy and potential 
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energy, and the microscopic elastic relaxation time for the molecular orientation field, respectively. Without 
loss of generality, we assume μ = λ = ν = 1 in the sequel.

Liquid crystal is a substance that exhibits a phase of matter that has properties between those of a 
conventional liquid and those of a solid crystal (cf. [5]). The hydrodynamic flow of incompressible liquid 
crystals was first derived by Ericksen and Leslie in 1960s (see [6,7,14,15]). Later, Lin [17] proposed the 
simplified version (1.1)–(1.4), which still retains most of the interesting mathematical properties of the 
original Ericksen–Leslie model.

Roughly speaking, (1.1)–(1.4) is a nonlinear coupling of the homogeneous Navier–Stokes equations and 
the system for the flow of harmonic maps into sphere. In the last decades, there were a considerable number 
of papers devoted to nematic liquid crystal flows. To our knowledge, mathematical analysis of liquid crystals 
flow was initially studied by a series of papers: Lin [17], and Lin and Liu [19,20], where they investigated 
an approximation model of the Ericksen–Leslie system by Ginzburg–Landau functionals, that is, Eq. (1.2)
is replaced by

dt + u · ∇d = ν

(
Δd + 1

ε2

(
1 − |d|2

)
d

)
. (1.5)

More precisely, the authors proved the global existence of classical and weak solutions of (1.1), (1.3), (1.5)
in dimensions two and three, respectively. For any fixed ε, Lin and Liu [20] extended the classical theorem 
by Caffarelli, Kohn and Nirenberg [1] that asserts the one-dimensional parabolic Hausdorff measure of the 
singular set of any suitable weak solution is zero. Furthermore, Lin and Liu [21] proved existence of solutions 
for the general Ericksen–Leslie system and also analyzed the limits of weak solutions of (1.1), (1.3), (1.5) as 
ε → 0.

Compared to (1.5), it is indeed much more difficult to deal with system (1.1)–(1.4) due to the presence of 
the nonlinear term |∇d|2d with the restriction |d| = 1. In two independent papers [10] and [18], Hong and 
Lin, Lin and Wang showed the global existence of Leray–Hopf-type weak solutions of (1.1)–(1.4) in dimension
two. Since Chang, Ding and Ye [3] show that the strong solutions of the heat flow of harmonic maps must 
blow up in finite time, one cannot expect that (1.1)–(1.4) has a global smooth solution with general initial 
data. Huang and Wang [11] announced the local existence of smooth solutions and established a blow-up 
criterion for this local solutions. Indeed, they gave if the initial velocity u0 ∈ Hm(R2) and d0 ∈ Hm+1(R2, S)
with div u0 = 0 for m ≥ 3, then system (1.1)–(1.4) has a unique local classical solution (u, d) on R3 × [0, T∗)
satisfying

u ∈ C
(
[0, T∗];Hm

(
R3)) ∩ L2((0, T∗);Hm+1(R3)),

d ∈ C
(
[0, T∗];Hm+1(R3, S2)) ∩ L2((0, T∗);Hm+2(R3, S2)),

where 0 < T∗ is constant depending only on the initial value. With small initial data, the global existence 
of solution of (1.1)–(1.4) was studied in [18,32] and [16,9,29] in two and three dimensions, respectively. 
Moreover, in order to understand which quantity becomes infinite as the time approaches, various blow-up 
criteria were established in [8,11,22,23,30,31,33,36,37] and the references therein.

In this paper, we are mainly interested in the global existence and the decay estimates of the smooth 
solution to (1.1)–(1.4) in Hm (m ≥ 3) with small energy. We use Fourier splitting method to give the 
decay estimates. Concerning the time decay rate for the Navier–Stokes equations, besides Fourier splitting 
method, a new method was established [34] by Zhou and it was applied in [35]. We state the main theorem 
of the paper as follows.

Theorem 1.1. Assume the initial data (u0, d0) satisfies for an integer m ≥ 3

u0 ∈ Hm
(
R3) with div u0 = 0, d0 ∈ Hm+1(R3, S2). (1.6)
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