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Article history: Let ¢(z) be a function in the Laguerre-Pélya class. Write ¢(z) = e~ ¢, (z) where
Received 1 January 2014 a > 0 and where ¢1(z) is a real entire function of genus 0 or 1. Let f(z) be any
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Submitted by L. Fialkow real entire function of the form f(z) e fi(z) where v > 0 and fi(z) is a

real entire function of genus O or 1 having all of its zeros in the strip S(r) =
{z € C: —r < Imz < r}, where r > 0. If ary < 1/4, the linear differential operator

g:r%q:(;?d;tire functions ¢(D)f(z), where D denotes differentiation, is known to converge to a real entire
Laguerre—Pélya class function whose zeros also belong the strip S(r). We describe several necessary and
Complex zero strip decreasing sufficient conditions on ¢(z) such that all zeros of ¢(D)f(z) belong to a smaller
operators strip S(r1) = {z € C: —r1 <Imz < 71} where 0 < r1 < r and r1 depends on ¢(z)

but is independent of f(z). We call a linear operator having this property a complez
zero strip decreasing operator or CZSDO. We examine several relevant examples,
in certain cases we give explicit upper and lower bounds for 7/, and we state several
conjectures and open problems regarding complex zero strip decreasing operators.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

An important problem in the theory of the distribution of zeros of a collection of entire functions is to
understand the effect of linear operators that act on the collection. It is particularly interesting when the
operators preserve a nice property about the location of the zeros. The linear operators we will study in
this paper are differential operators ¢(D) where ¢(z) is a function in the Laguerre—Pdlya class and D is
differentiation. If f(z) is a real entire function satisfying appropriate technical requirements whose zeros
belong to the strip S(r) = {z € C: —r < Imz < r}, we study the problem of when all zeros of ¢(D)f(z)
belong to a smaller strip S(r’) where 0 < v/ < r. The main results in the paper are stated in Theorems 1.5
and 1.6.

Before stating these theorems we will need a few definitions and a technical lemma that defines the linear
differential operator ¢(D) and tells us when the expression ¢(D)f(z) makes sense.
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Definition 1.1 (LP and LP;). The Laguerre—Pdlya class, denoted LP, consists of the real entire functions
whose Weierstrass product representations are of the form

m aczfﬁz2 1— i z/ag 1
cz'e H( ozk)e ) ( )

k

where ¢, a, 3, ay, are real, 3 > 0, m is a nonnegative integer, and >, |a| ™2 < co. The subclass LPy of LP
consists of those functions in LP with § =0 in Eq. (1).

The class LP consists of the entire functions obtained as uniform limits on compact sets of sequences
of real polynomials having only real zeros. See Levin [13, Thm. 3, p. 331]. Motivation for why this class of
functions naturally arises in relation to differential operators is given in Section 2.

Definition 1.2 (LP(r) and LP1(r)). For r > 0, the extended Laguerre—Pdlya class, denoted LP(r), consists
of the real entire functions having the Weierstrass product representation in Eq. (1) except that the zeros
belong to the strip

S(ry={zeC:—r <Imz <r}.

Thus, the zeros of a function f(z) € LP(r) are either real or occur in complex conjugate pairs. The subclass
LP1(r) of LP(r) consists of those functions in LP1(r) with § =0 in Eq. (1). If » < 0 or r is imaginary, we
define LP(r) = LP and S(r) =R.

The following lemma shows how functions in £LP define linear differential operators on functions in LP(r).
A trivial modification to the proof of a theorem in Levin [13] gives:

Lemma 1.3. (See Levin [13], Thm. 8, p. 360.) Assume
d(z) = e 1 gy (2) = Zakzk e LP
k=0

where v1 > 0 and ¢1(z) € LPy. Also let 7 > 0 and assume f(z) = e 2% f1(2) € LP(r) where v, > 0 and
fi1(z) € LP1(r). If iy2 < 1/4, the linear differential operator ¢(D) is defined by

¢(D)f(2) = arfP(2), (2)
k=0

where D denotes differentiation. The sum converges uniformly on every compact subset of C and ¢(D) f(z) €

LP(r).

The assumption y1v2 < 1/4 is essential. Levin [13, p. 361] gives the explicit example ¢(z) = e~ 1% and
f(2) = e= 2% to show that ¢(D)f(z) diverges at z = 0 when vy, = 1/4.

In the lemma the zeros of f(z) are in the strip S(r) as are the zeros of ¢(D)f(z). So, ¢(D) is an
operator that preserves the strip S(r) containing the zeros. However, our main interest in this paper is to
study the operators ¢(D) such that the zeros of ¢(D)f(z) belong to a strictly smaller strip S(r1) where
0<r <r.
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