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In this paper, the 3-D compressible magnetohydrodynamic (MHD) equations with 
initial vacuum or infinite electric conductivity is considered. We prove that the L∞

norms of the deformation tensor D(u) and the absolute temperature θ control the 
possible blow-up (see [18,23]) of strong solutions, especially for the non-resistive 
MHD system when the magnetic diffusion vanishes. This conclusion means that if 
a solution of the compressible MHD equations is initially regular and loses its regu-
larity at some later time, then the formation of singularity must be caused by losing 
the bound of D(u) or θ as the critical time approaches. The viscosity coefficients are 
only restricted by the physical conditions. Our criterion (see (1.17)) is similar to [17]
for 3-D incompressible Euler equations and to [12] for 3-D compressible isentropic 
Navier–Stokes equations.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Magnetohydrodynamics is that part of the mechanics of continuous media which studies the motion of 
electrically conducting media in the presence of a magnetic field. The dynamic motion of fluid and magnetic 
field interact strongly with each other, so the hydrodynamic and electrodynamic effects are coupled. The 
applications of magnetohydrodynamics cover a very wide range of physical objects, from liquid metals to 
cosmic plasmas, for example, the intensely heated and ionized fluids in an electromagnetic field in astro-
physics and plasma physics. In 3-D space, the compressible magnetohydrodynamic equations in a domain Ω

of R3 can be written as
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Ht − rot(u×H) = − rot
(

1
σ

rotH
)
,

divH = 0,
ρt + div(ρu) = 0,
(ρu)t + div(ρu⊗ u) + ∇P = divT + rotH ×H,

(ρθ)t + div(ρθu) − κΔθ + P div u = div(uT) − u divT + 1
σ
|rotH|2.

(1.1)

In this system, x ∈ Ω is the spatial coordinate; t ≥ 0 is the time; H = (H1, H2, H3) is the magnetic field; 
rotH = ∇ ×H denotes the rotation of the magnetic field; 0 < σ ≤ ∞ is the electric conductivity coefficient; 
ρ is the mass density; u = (u1, u2, u3) ∈ R

3 is the velocity of fluids; κ > 0 is the thermal conductivity 
coefficient; P is the pressure satisfying

P = Rρθ, (1.2)

where θ is the absolute temperature, R is a positive constant; T is the viscosity stress tensor:

T = 2μD(u) + λ div uI3, D(u) = ∇u + (∇u)�

2 , (1.3)

where D(u) is the deformation tensor, I3 is the 3 × 3 unit matrix, μ is the shear viscosity coefficient, λ + 2
3μ

is the bulk viscosity coefficient, μ and λ are both real constants satisfying

μ > 0, λ + 2
3μ ≥ 0, (1.4)

which ensures the ellipticity of the Lamé operator. Although the electric field E doesn’t appear in sys-
tem (1.1), it is indeed induced according to a relation

E = 1
σ

rotH − u×H

by moving the conductive flow in the magnetic field.
The aim of this paper is to give a blow-up criterion of strong solutions to system (1.1) in a bounded, 

smooth domain Ω ∈ R
3 with the initial condition:

(H, ρ, u, θ)|t=0 =
(
H0(x), ρ0(x), u0(x), θ0(x)

)
, x ∈ Ω, (1.5)

and the Dirichlet, Neumann boundary conditions for (H, u, θ):

(H,u, ∂θ/∂n)|∂Ω = (0, 0, 0), when 0 < σ < +∞; (1.6)

(u, ∂θ/∂n)|∂Ω = (0, 0), when σ = +∞, (1.7)

where n is the unit outer normal vector to ∂Ω. Actually, some similar result for Ω = R
3 can be also obtained 

via the similar argument used in this paper.
Throughout this paper, we adopt the following simplified notations for the standard homogeneous and 

inhomogeneous Sobolev space:

Dk,r =
{
f ∈ L1

loc(Ω) : |f |Dk,r =
∣∣∇kf

∣∣
Lr < +∞

}
, Dk = Dk,2,∥∥(f, g)

∥∥
X

= ‖f‖X + ‖g‖X , ‖f‖1,0 = ‖f‖H1
0 (Ω), ‖f‖s = ‖f‖Hs(Ω),

‖f‖Wk,r = ‖f‖Wk,r(Ω), |f |p = ‖f‖Lp(Ω), |f |Dk,r = ‖f‖Dk,r(Ω).

A detailed study of homogeneous Sobolev space may be found in [9].
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