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possible blow-up (see [18,23]) of strong solutions, especially for the non-resistive
MHD system when the magnetic diffusion vanishes. This conclusion means that if
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Blow-up criterion only restricted by the physical conditions. Our criterion (see (1.17)) is similar to [17]

for 3-D incompressible Euler equations and to [12] for 3-D compressible isentropic
Navier—Stokes equations.
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1. Introduction

Magnetohydrodynamics is that part of the mechanics of continuous media which studies the motion of
electrically conducting media in the presence of a magnetic field. The dynamic motion of fluid and magnetic
field interact strongly with each other, so the hydrodynamic and electrodynamic effects are coupled. The
applications of magnetohydrodynamics cover a very wide range of physical objects, from liquid metals to
cosmic plasmas, for example, the intensely heated and ionized fluids in an electromagnetic field in astro-
physics and plasma physics. In 3-D space, the compressible magnetohydrodynamic equations in a domain {2
of R3 can be written as
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1
H, —rot(ux H) = —rot(—rotH),
o

div H = 0,
pt + div(pu) =0, (1.1)
(pu)y +div(pu @ u) + VP =divT +rot H x H,

1
(pf); + div(pbu) — kAG + P divu = div(uT) — udivT + —|rot H|?.
o

In this system, x € §2 is the spatial coordinate; t > 0 is the time; H = (H', H?, H3) is the magnetic field;

rot H = V x H denotes the rotation of the magnetic field; 0 < o < oo is the electric conductivity coefficient;

p is the mass density; u = (u!,u?,u3) € R? is the velocity of fluids; x > 0 is the thermal conductivity

coefficient; P is the pressure satisfying
P = Rpb, (1.2)
where 6 is the absolute temperature, R is a positive constant; T is the viscosity stress tensor:

T
T =2uD(u) + Adivuls, D(u) = M, (1.3)

where D(u) is the deformation tensor, I3 is the 3 x 3 unit matrix, u is the shear viscosity coefficient, A + % I
is the bulk viscosity coefficient, p and A\ are both real constants satisfying

2
w>0, A+ 5/120, (1.4)

which ensures the ellipticity of the Lamé operator. Although the electric field F doesn’t appear in sys-
tem (1.1), it is indeed induced according to a relation

1
EF=—rotH—-—uxH
o

by moving the conductive flow in the magnetic field.
The aim of this paper is to give a blow-up criterion of strong solutions to system (1.1) in a bounded,
smooth domain {2 € R? with the initial condition:

(H7p7u39)|t:0: (Ho(x),po(x),U0($)700($))7 ZL‘GQ, (15)
and the Dirichlet, Neumann boundary conditions for (H,u,6):

(H,u,00/0n)|sq = (0,0,0), when 0 < o < +00; (1.6)

(u,00/0n)|s2 = (0,0), when o = 400, (1.7)

where n is the unit outer normal vector to 9f2. Actually, some similar result for 2 = R? can be also obtained
via the similar argument used in this paper.

Throughout this paper, we adopt the following simplified notations for the standard homogeneous and

inhomogeneous Sobolev space:
DM = {f € Li,o(2) : | flprs = |V¥f|,, < 400}, DV =DF2
1Dy =1 lx +lgllx,  Ifllvo = M llags  IFls = 1F (o),
I fllwer = 1 llwer ), Iflp = I fllzr(2); |flprr = | fllprr(0)-

A detailed study of homogeneous Sobolev space may be found in [9].
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