

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Admissible fundamental operators

Tirthankar Bhattacharyya^a, Sneh Lata^b, Haripada Sau^{a,*}

^a Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
 ^b Department of Mathematics, Shiv Nadar University, School of Natural Sciences,
 Gautam Budh Nagar 203207, Uttar Pradesh, India

ARTICLE INFO

Article history: Received 30 June 2014 Available online 12 January 2015 Submitted by J.A. Ball

Keywords: Spectral set Symmetrized bidisc Γ -contraction Fundamental operator Admissible pair Tetrablock

ABSTRACT

Let F and G be two bounded operators on two Hilbert spaces. Let their numerical radii be no greater than one. This note investigates when there is a Γ -contraction (S,P) such that F is the fundamental operator of (S,P) and G is the fundamental operator of (S^*,P^*) . Theorem 1 puts a necessary condition on F and G for them to be the fundamental operators of (S,P) and (S^*,P^*) respectively. Theorem 2 shows that this necessary condition is also sufficient provided we restrict our attention to a certain special case. The general case is investigated in Theorem 3. Some of the results obtained for Γ -contractions are then applied to tetrablock contractions to figure out when two pairs (F_1,F_2) and (G_1,G_2) acting on two Hilbert spaces can be fundamental operators of a tetrablock contraction (A,B,P) and its adjoint (A^*,B^*,P^*) respectively. This is the content of Theorem 3.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The symmetrized bidisc is

$$\Gamma = \{(z_1 + z_2, z_1 z_2) : |z_1|, |z_2| \le 1\}.$$

Its distinguished boundary, i.e., the Shilov boundary with respect to the algebra of functions continuous on Γ and holomorphic in the interior of Γ is $b\Gamma = \{(z_1 + z_2, z_1 z_2) : |z_1| = 1 = |z_2|\}$. A pair of commuting bounded operators (S, P) on a Hilbert space \mathcal{H} having the symmetrized bidisc as a spectral set is called a Γ -contraction. This means that the joint spectrum $\sigma(S, P) \subset \Gamma$ and

$$||f(S,P)|| \le \sup\{|f(s,p)| : (s,p) \in \Gamma\}$$

 $^{^{\,\}pm}$ This research is supported by the Department of Science and Technology, India through the project numbered SR/S4/MS:766/12 and the University Grants Commission, India via DSA-SAP.

^{*} Corresponding author.

 $[\]label{lem:eq:condition} \textit{E-mail addresses:} \ tirtha@math.iisc.ernet.in \ (T. Bhattacharyya), sneh.lata@snu.edu.in \ (S. Lata), sau10@math.iisc.ernet.in \ (H. Sau).$

for all $f \in \mathbb{C}[z_1, z_2]$. The study of Γ -contractions was introduced and carried out very successfully over several papers by Agler and Young, see [3] and the references therein. It follows that the operator P is a contraction and $||S|| \leq 2$. It can be seen directly from the definition that (S^*, P^*) is a Γ contraction too. Let $D_P = (I - P^*P)^{1/2}$ and $\mathcal{D}_P = \overline{Ran}D_P$. The fundamental operator is the unique bounded operator on \mathcal{D}_P that satisfies the fundamental equation

$$S - S^*P = D_P F D_P.$$

It has numerical radius w(F) no greater than one. The fundamental operator of a Γ -contraction was introduced in [8]. There it is shown that the fundamental equation has a unique solution. The discovery of the fundamental operator of a Γ -contraction put a spurt in the activities around it. In particular, we would like to mention Sarkar's work [11] which made a significant contribution to the understanding of Γ -contractions.

In this paper, $\mathcal{B}(\mathcal{H})$ for a Hilbert space \mathcal{H} will denote the algebra of all bounded operators on \mathcal{H} . Since (S^*, P^*) is also a Γ -contraction, it has its own fundamental operator $G \in \mathcal{B}(\mathcal{D}_{P^*})$ with $w(G) \leq 1$. Note how both F and G feature in the following explicit construction of a boundary normal dilation.

A boundary normal dilation of a Γ -contraction (S, P) is a pair of commuting normal operators (R, U) on a Hilbert space \mathcal{K} containing \mathcal{H} such that (R, U) is a *dilation* of the given pair (S, P) and $\sigma(R, U)$, the joint spectrum is contained in the distinguished boundary $b\Gamma$. *Dilation* means that

$$P_{\mathcal{H}}R^mU^n\big|_{\mathcal{H}} = S^mP^n.$$

Such a pair (R, U) is also called a Γ -unitary. The following construction, done by two of the authors of the present paper in [9] and independently by Pal in [10], is one of the very few explicit constructions of dilations known, the only other ones being Schaeffer's construction of the minimal unitary dilation of a contraction in [13] and Ando's construction of a commuting unitary dilation of a pair of commuting bounded operators in [4].

Known Theorem. Let (S, P) be a Γ -contraction. Let F and G be the fundamental operators of (S, P) and (S^*, P^*) respectively. Consider the space K defined as

$$\mathcal{K} = \cdots \oplus \mathcal{D}_{P} \oplus \mathcal{D}_{P} \oplus \mathcal{D}_{P} \oplus \mathcal{D}_{P} \oplus \mathcal{H} \oplus \mathcal{D}_{P^{*}} \oplus \mathcal{D}_{P^{*}} \oplus \mathcal{D}_{P^{*}} \oplus \cdots$$

Let R and U be defined on K as follows.

$$R = \begin{bmatrix} \ddots & \vdots \\ \cdots & F & F^* & 0 & 0 & 0 & 0 & 0 & \cdots \\ \cdots & 0 & F & F^* & 0 & 0 & 0 & 0 & \cdots \\ \cdots & 0 & 0 & F & F^*D_P & -F^*P^* & 0 & 0 & \cdots \\ \hline \cdots & 0 & 0 & 0 & S & D_{P^*}G & 0 & 0 & \cdots \\ \hline \cdots & 0 & 0 & 0 & G^* & G & 0 & \cdots \\ \cdots & 0 & 0 & 0 & 0 & G^* & G & \cdots \\ \cdots & 0 & 0 & 0 & 0 & 0 & G^* & \cdots \\ \vdots & \ddots \end{bmatrix},$$

$$(1.1)$$

Download English Version:

https://daneshyari.com/en/article/4615551

Download Persian Version:

https://daneshyari.com/article/4615551

<u>Daneshyari.com</u>