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1. Introduction

The symmetrized bidisc is
= {(2'1 + 29,2122) ¢ |21], |22] < 1}.

Its distinguished boundary, i.e., the Shilov boundary with respect to the algebra of functions continuous on
I' and holomorphic in the interior of I" is bI" = {(21 + 22, 2122) : |21] = 1 = |22|}. A pair of commuting
bounded operators (S, P) on a Hilbert space H having the symmetrized bidisc as a spectral set is called a
I'-contraction. This means that the joint spectrum o (S, P) C I" and

1£(S, P)|| < sup{|f(s,p)| : (s,p) € I'}
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for all f € C[z1,22]. The study of I'-contractions was introduced and carried out very successfully over
several papers by Agler and Young, see [3] and the references therein. It follows that the operator P is a
contraction and ||.S]| < 2. It can be seen directly from the definition that (S*, P*) is a I" contraction too.
Let Dp = (I — P*P)Y/? and Dp = RanDp. The fundamental operator is the unique bounded operator on
Dp that satisfies the fundamental equation

S — S*P = DpFDp.

It has numerical radius w(F') no greater than one. The fundamental operator of a I'-contraction was in-
troduced in [8]. There it is shown that the fundamental equation has a unique solution. The discovery
of the fundamental operator of a I['-contraction put a spurt in the activities around it. In particular,
we would like to mention Sarkar’s work [11] which made a significant contribution to the understanding of
I'-contractions.

In this paper, B(H) for a Hilbert space H will denote the algebra of all bounded operators on H. Since
(S*, P*) is also a I'-contraction, it has its own fundamental operator G € B(Dp-) with w(G) < 1. Note
how both F' and G feature in the following explicit construction of a boundary normal dilation.

A boundary normal dilation of a I'-contraction (S, P) is a pair of commuting normal operators (R, U)
on a Hilbert space K containing H such that (R,U) is a dilation of the given pair (S, P) and o(R,U), the
joint spectrum is contained in the distinguished boundary bI". Dilation means that

PHR’”U"|H = S™mpP".
Such a pair (R,U) is also called a I'-unitary. The following construction, done by two of the authors of the
present paper in [9] and independently by Pal in [10], is one of the very few explicit constructions of dilations
known, the only other ones being Schaeffer’s construction of the minimal unitary dilation of a contraction

in [13] and Ando’s construction of a commuting unitary dilation of a pair of commuting bounded operators
in [4].

Known Theorem. Let (S, P) be a I'-contraction. Let F and G be the fundamental operators of (S, P) and
(S*, P*) respectively. Consider the space K defined as

K=---©Dp®DpdDp L HDDp-EDp- &Dp-D---.

Let R and U be defined on IC as follows.
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