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We investigate the viscous model of quantum hydrodynamics, which describes 
the charge transport in a certain semiconductor. Quantum mechanical effects 
lead to third order derivatives, turning the stationary system into an elliptic 
system of mixed order in the sense of Douglis–Nirenberg. In the case most 
relevant to applications, the semiconductor device features a piecewise constant 
barrier potential. In the case of thermodynamic equilibrium, we obtain asymptotic 
expansions of interfacial layers of the particle density in neighbourhoods of the jump 
points of this barrier potential, and we present rigorous proofs of uniform estimates 
of the remainder terms in these asymptotic expansions.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The ongoing miniaturisation of electronical devices requires the investigation of mathematical models for 
the electron transport that include quantum mechanical terms. One of these models is the isentropic viscous 
quantum hydrodynamic model⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tn− div J = νΔn,

∂tJ − div
(
J ⊗ J

n

)
−∇p(n) + n∇(V + VB) + ε2

6 n∇Δ
√
n√
n

= νΔJ − J

τ
,

λ2ΔV = n− C,

(1)

formulated for the unknown functions (n, J, V ), and the independent variables are t ∈ R as time, and x ∈ R
d

as space. The unknown functions are the (positive) scalar electron density n, the vectorial electric current 
density J , and the scalar electric potential V . The item p(n) is a generic pressure term, and a common choice 
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is p(n) = Tn + μn, with a temperature T given by a relation T (n) = T0n
γ−1 for a positive constant T0 and 

some γ ≥ 1, and μ > 0. Furthermore, the barrier potential VB = VB(x) and the doping profile C = C(x)
of the semiconductor are given functions that describe certain material properties; these two functions are 
typically piecewise constant, and they are of crucial importance for the working principle of devices as the 
resonant tunnel diode. The purpose of this paper is to study analytically the behaviour of the solutions 
(n, J, V ) near the jump points of the barrier potential VB.

Additionally, we have certain positive physical constants, which have been scaled for ease of notation: 
The Planck constant ε, a relaxation time τ , the Debye length λ, and a viscosity constant ν.

A model (1) without the viscosity terms on the right hand side was proposed in [11] as a variant of the 
classical Euler–Poisson system, augmented by a term

ε2

6 n∇Δ
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n

=: ε
2

6 n∇B(n)

that involves the Bohm potential B(n) and describes quantum mechanical effects. The expectation is that 
this term is negligible in those regions where the electron flow can be described in terms of classical physics 
(i.e., in some regions far away from jump points of VB).

There are various ways to derive (inviscid) quantum hydrodynamic models; we mention the traditional 
moment method applied to the collision Wigner equation [11], an approach via WKB wave functions from 
the Schrödinger Poisson system [14], and the entropy minimization approach [16]. Augmenting the Wigner 
equation with a Fokker Planck operator that describes the interaction of the electrons with the phonons of 
the crystal lattice, the dissipation terms νΔn and νΔJ appear, see [3]. For an overview of this field, we refer 
to [1] and [15].

The quantum mechanical effects enter the system mainly via the Bohm term B(n), which introduces 
third order spatial derivatives into the momentum balance equation, which complicates analytical studies 
of (1) considerably, compare [4–6,10] for results on the transient problem without barrier potential. Further 
analytical difficulties arise from the barrier potential VB having jumps, and in that situation the second 
equation of (1) must be understood in the distributional sense. We are not aware of any analytical results 
concerning the transient system (1), however we mention numerical simulations in [8,11,13,17,18], and [19].

We focus our attention to a one-dimensional, stationary system,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
J ′ = −νn′′ in [0, 1],

2ε2n
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√
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)′
− νJ ′′ −
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)′ + J

τ
=

(
J2

n

)′
− n(V + VB)′ in [0, 1],

λ2V ′′ = n− C in [0, 1].

(2)

For such a stationary system (without barrier potential), the existence of solutions was shown in [12], 
assuming small applied voltages V (1)–V (0) and small currents J , which corresponds to a subsonic condition 
for the moving electrons. Although formulated for the isothermal case p(n) = (T0 + μ)n, the results of [12]
seem to generalize to the case of general pressure terms p(n). And we also mention [9], where it was shown 
(in the isothermal case) that solutions (n, V, J) ∈ W 2,2(0, 1) × W 2,2(0, 1) × W 1,2(0, 1) to (2) for given 
(possibly large) Dirichlet boundary values for V and periodic boundary values for n do exist.

The purpose of the present paper is to extend the solution theory of [9] towards an asymptotic expansion of 
the solution, for vanishing values of the quantum mechanical parameters ε and ν, focusing on the equilibrium 
case. See also [20] for further results. It turns out that we find a similar asymptotic expansion of the particle 
density n as in [2,7] for a stationary quantum drift diffusion model.

The solution theory in [9] is based on a reformulation of the system (2) by means of a viscosity-adjusted 
Fermi level
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