New representation and factorizations of the higher-order ultraspherical-type differential equations

Clemens Markett
Lehrstuhl A für Mathematik, RWTH Aachen, Temlergraben 55, D-52062 Aachen, Germany

A R T I C L E I N F O

Article history:

Received 15 February 2014
Available online 8 July 2014
Submitted by P. Nevai

Keywords:

Special functions
Orthogonal polynomials
Higher-order linear differential equations
Ultraspherical-type equations Factorization

Abstract

The paper deals with the class of linear differential equations of any even order $2 \alpha+4$, $\alpha \in \mathbb{N}_{0}$, which are associated with the so-called ultraspherical-type polynomials. These polynomials form an orthogonal system on the interval $[-1,1]$ with respect to the ultraspherical weight function $\left(1-x^{2}\right)^{\alpha}$ and additional point masses of equal size at the two endpoints. The differential equations of "ultraspherical-type" were developed by R. Koekoek in 1994 by utilizing special function methods. In the present paper, a new and completely elementary representation of these higher-order differential equations is presented. This result is used to deduce the orthogonality relation of the ultraspherical-type polynomials directly from the differential equation property. Moreover, we introduce two types of factorizations of the corresponding differential operators of order $2 \alpha+4$ into a product of $\alpha+2$ linear second-order operators.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In 1994, R. Koekoek [12] discovered a new class of higher-order linear differential equations satisfied by the symmetric "ultraspherical-type" polynomials. These are the particular cases $\alpha=\beta, M=N$ of Koornwinder's "Jacobi-type" polynomials $\left\{P_{n}^{\alpha, \beta, M, N}(x)\right\}_{n=0}^{\infty}, \alpha, \beta>-1, M, N \geq 0$, which were introduced in [14] as the orthogonal polynomials with respect to a linear combination of the Jacobi weight function and two "delta functions" at the endpoints of the interval $[-1,1]$, i.e.

$$
\begin{equation*}
\frac{\Gamma(\alpha+\beta+2)}{2^{\alpha+\beta+1} \Gamma(\alpha+1) \Gamma(\beta+1)}(1-x)^{\alpha}(1+x)^{\beta}+M \delta(x+1)+N \delta(x-1) \tag{1.1}
\end{equation*}
$$

For any $\alpha \in \mathbb{N}_{0}, M>0$, it was proved in [12, Theorem 2] that the orthogonal polynomials of ultraspherical-type, $\left\{P_{n}^{\alpha, \alpha, M, M}(x)\right\}_{n=0}^{\infty}$, satisfy a linear differential equation of order $2 \alpha+4$, where only the constant term depends on the degree n of the polynomials, namely

[^0]\[

$$
\begin{equation*}
M\left\{\sum_{i=2}^{2 \alpha+4} c_{i}^{\alpha} D_{x}^{i} y(x)+c_{0}^{\alpha, n} y(x)\right\}+\left\{\left(1-x^{2}\right) D_{x}^{2} y(x)-(2 \alpha+2) D_{x} y(x)+n(n+2 \alpha+1) y(x)\right\}=0 . \tag{1.2}
\end{equation*}
$$

\]

Here and in the following, $D_{x}^{i} \equiv\left(D_{x}\right)^{i}$ denotes the i-fold differentiation with respect to x. Furthermore, the constant coefficient reads

$$
\begin{align*}
c_{0}^{\alpha, n} & =4(2 \alpha+3)\binom{n+2 \alpha+2}{n-2} \\
& =\frac{4(2 \alpha+3)}{(2 \alpha+4)!}(n-1)_{2 \alpha+4}=\frac{2(n-1)_{2 \alpha+4}}{(\alpha+2)(2 \alpha+2)!} \tag{1.3}
\end{align*}
$$

and the coefficient functions $c_{i}^{\alpha}(x), i=2, \cdots, 2 \alpha+4$, are given by

$$
\begin{equation*}
c_{i}^{\alpha}(x)=(2 \alpha+3)\left(1-x^{2}\right) \frac{2^{i}}{i!} \sum_{k=\max (0, i-\alpha-3)}^{i-2}\binom{\alpha+1}{i-2-k} \frac{(2 \alpha+5-i)_{k}}{k!}\left(\frac{x-1}{2}\right)^{k} . \tag{1.4}
\end{equation*}
$$

Notice that the coefficient function of the highest derivative simplifies to

$$
\begin{align*}
c_{2 \alpha+4}^{\alpha}(x) & =(2 \alpha+3)\left(1-x^{2}\right) \frac{2^{2 \alpha+4}}{(2 \alpha+4)!} \sum_{k=\alpha+1}^{2 \alpha+2}\binom{\alpha+1}{2 \alpha+2-k} \frac{(1)_{k}}{k!}\left(\frac{x-1}{2}\right)^{k} \\
& =\frac{2^{2 \alpha+3}}{(\alpha+2)(2 \alpha+2)!}\left(1-x^{2}\right)\left(\frac{x-1}{2}\right)^{\alpha+1} \sum_{k=0}^{\alpha+1}\binom{\alpha+1}{k}\left(\frac{x-1}{2}\right)^{k} \\
& =-\frac{2^{2 \alpha+3}}{(\alpha+2)(2 \alpha+2)!}\left(x^{2}-1\right)\left(\frac{x-1}{2}\right)^{\alpha+1}\left(\frac{x+1}{2}\right)^{\alpha+1} \\
& =-\frac{2}{(\alpha+2)(2 \alpha+2)!}\left(x^{2}-1\right)^{\alpha+2} . \tag{1.5}
\end{align*}
$$

As M tends to $0+$, the remaining part of Eq. (1.2) yields the classical second-order ultraspherical equation (with parameter $\alpha \in \mathbb{N}_{0}$)

$$
\begin{align*}
\mathbf{L}_{2, x}^{\alpha} y(x) & :=\left[\left(x^{2}-1\right) D_{x}^{2}+(2 \alpha+2) x D_{x}\right] y(x) \\
& =\left(x^{2}-1\right)^{-\alpha} D_{x}\left[\left(x^{2}-1\right)^{\alpha+1} D_{x} y(x)\right]=n(n+2 \alpha+1) y(x) . \tag{1.6}
\end{align*}
$$

The bounded eigensolutions of this singular differential equation are the ultraspherical polynomials of order $n \in \mathbb{N}_{0}$ with well-known hypergeometric representation

$$
\begin{equation*}
P_{n}^{\alpha, \alpha}(x)=\frac{(\alpha+1)_{n}}{n!} R_{n}^{\alpha, \alpha}(x), \quad R_{n}^{\alpha, \alpha}(x)={ }_{2} F_{1}\left(-n, n+2 \alpha+1 ; \alpha+1 ; \frac{1-x}{2}\right) . \tag{1.7}
\end{equation*}
$$

For any property of special functions used in this paper we refer to [1] or $[6,7]$.
If $\alpha=0$, Eq. (1.2) reduces to the so-called Legendre-type equation

$$
\begin{align*}
& -\frac{1}{2}\left(1-x^{2}\right)^{2} y^{(4)}(x)+4 M x\left(1-x^{2}\right) y^{(3)}(x) \\
& \quad+(6 M+1)\left(1-x^{2}\right) y^{\prime \prime}(x)-2 x y^{\prime}(x)+\frac{1}{2} n(n+1)[(n-1)(n+2) M+2] y(x)=0 \tag{1.8}
\end{align*}
$$

This equation was discovered by H.L. Krall in his pioneering work dating back to 1938/1940 when he characterized all orthogonal polynomial systems which satisfy a linear differential equation of fourth order, see [16,17] as well as A.M. Krall [15]. Later on, L.L. Littlejohn [18] introduced and investigated the so-called

https://daneshyari.com/en/article/4615585

Download Persian Version:

https://daneshyari.com/article/4615585

Daneshyari.com

[^0]: E-mail address: clemens.markett@t-online.de.
 http://dx.doi.org/10.1016/j.jmaa.2014.07.001
 0022-247X/© 2014 Elsevier Inc. All rights reserved.

