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This paper is concerned with the problem of limit cycle bifurcation for piecewise 
smooth near-Hamiltonian systems with multiple parameters. By the first Melnikov 
function, some novel criteria have been established for the existence of multiple 
limit cycles. Furthermore, an example is included to validate the obtained results by 
considering the maximum number of limit cycles for a piecewise quadratic system 
studied in Llibre and Mereu (2014) [12]. Compared with the result in the above 
reference, one more limit cycle is found by our method.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction and main results

Piecewise smooth systems were widely investigated in the past few decades [1,2,5,6,9–14,16,20]. Until 
now, numerous results have been developed, one of which is to determine the number of limit cycles and 
their relative distributions for this kind of systems, such as in [5,9–14,16,20] and references therein. In 
particular, limit cycles of piecewise linear systems defined on two half-planes separated by a straight line 
x = 0 or y = 0 have received considerable attention recently in the literature [9,14,16]. It is found that 
piecewise linear systems can have three limit cycles [9,14]. While, to the best of our knowledge, there are 
few studies on the maximal number of limit cycles for piecewise quadratic systems. The main difficult lies 
in that one does not know how to determine the maximal number of limit cycles for quadratic systems. So 
far, it has been shown that there exist four limit cycles for such systems [3,19]. Up to now, there is no better 
results to cover it.

As an attempt to make further investigation for the piecewise quadratic system, it is also good to 
consider a perturbation system of a quadratic polynomial differential system with an isochronous center 
and determine the maximum number of the limit cycles for it. The author [17] provided a reference for 
the classification of quadratic polynomial differential systems containing an isochronous center. When the 
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Fig. 1.1. Periodic orbit Lλ.

systems are perturbed by quadratic polynomials, one can find two limit cycles which emerge from the 
periodic orbits [4]. While when they are perturbed by piecewise quadratic polynomials, one can obtain five 
limit cycles [12]. This conclusion is improved in this paper, one more limit cycle obtaining.

Similar to the investigation of the limit cycle problem for smooth systems [7,8,18,21], it is well known 
that there exist at least two methods to study the problem of limit cycles emerging from period annulus 
for piecewise smooth systems. One is the averaging method established in [13] and another is the Melnikov 
function method developed in [11]. In this paper, we will utilize the latter one to consider the problem of 
limit cycles for a class of piecewise smooth near-Hamiltonian systems with multiple parameters by following 
the main idea of [8]. More precisely, we consider the following system

(
ẋ

ẏ

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
H+

y (x, y, λ) + εp+(x, y, λ)
−H+

x (x, y, λ) + εq+(x, y, λ)

)
, x > 0,(

H−
y (x, y, λ) + εp−(x, y, λ)

−H−
x (x, y, λ) + εq−(x, y, λ)

)
, x < 0,

(1.1)

where 0 < ε � λ � 1, H±, p± and q± are C∞ functions in (x, y). Without loss of generality, for system (1.1), 
we make two assumptions below:

(H1) For small λ, suppose (1.1)|ε=0 has a family of periodic orbits with clockwise orientation given by

Lλ(h): H(x, y, λ) = h, h ∈ Iλ.

(H2) Each periodic orbit Lλ(h) defined in (H1) intersects the y-axis with two different points in turn, 
denoted by Aλ(h) = (0, a(h, λ)) and Bλ(h) = (0, b(h, λ)) with a(h, λ) > b(h, λ), respectively, see 
Fig. 1.1.

Let (H1) and (H2) hold. Then, by Theorem 1.1 in [11] and Lemma 2.2 in [10], the first order Melnikov 
function of (1.1) can be expressed as

M(h, λ) =
∫

̂AλBλ

q+dx− p+dy +
H+

y (Aλ, λ)
H−

y (Aλ, λ)

∫
̂BλAλ

q−dx− p−dy, (1.2)

where ÂλBλ and B̂λAλ denote Lλ∩{x ≥ 0} and Lλ∩{x ≤ 0} respectively. We rewrite (1.2) for λ > 0 small

M(h, λ) = M0(h) + λM1(h) + λ2M2(h) + O
(
λ3). (1.3)
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