

Parameter convexity and concavity of generalized trigonometric functions

D.B. Karp ${ }^{\text {a,b,* }}$, E.G. Prilepkina ${ }^{\text {a,b }}$
${ }^{\text {a }}$ Far Eastern Federal University, 8 Sukhanova street, Vladivostok, 690950, Russia
b Institute of Applied Mathematics, FEBRAS, 7 Radio street, Vladivostok, 690041, Russia

A R T I C L E I N F O

Article history:

Received 6 March 2014
Available online 15 July 2014
Submitted by M.J. Schlosser

Keywords:

Generalized trigonometric functions
Generalized hyperbolic functions
Eigenfunctions of p-Laplacian
Log-convexity
Log-concavity
Turán type inequality

Abstract

We study the convexity properties of the generalized trigonometric functions viewed as functions of the parameter. We show that $p \rightarrow \sin _{p}(y)$ and $p \rightarrow \cos _{p}(y)$ are \log-concave on the appropriate intervals while $p \rightarrow \tan _{p}(y)$ is \log-convex. We also prove similar facts about the generalized hyperbolic functions. In particular, our results settle a major part of the conjecture recently put forward in [4].

© 2014 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

The symbol \mathbb{R}_{+}will mean $[0, \infty)$. There are several ways in the literature to define generalized trigonometric functions (see, for instance, $[11,12,17,18,24]$). We will stick with the definition adopted in the book [16]. For $p>0$ define a differentiable function $F_{p}:[0,1) \rightarrow \mathbb{R}_{+}$by

$$
\begin{equation*}
F_{p}(x)=\int_{0}^{x}\left(1-t^{p}\right)^{-1 / p} d t \tag{1}
\end{equation*}
$$

Clearly, $F_{2}=\arcsin$ so that F_{p} can be viewed as generalized $\operatorname{arcsine} F_{p}(x)=\arcsin _{p}(x)$. Since F_{p} is strictly increasing it has an inverse denoted by $\sin _{p}$. In all the references we could find the range of p is restricted to $(1, \infty)$ because only in this case $\sin _{p}(x)$ can be made periodic like usual sine. Nothing prohibits, however, defining $\sin _{p}(x)$ for all $p>0$, so we will be dealing with such generalized case here. If $p>1$ the function $\sin _{p}(x)$ is defined on the interval $\left[0, \pi_{p} / 2\right]$, where

[^0]$$
\pi_{p}=2 \int_{0}^{1}\left(1-t^{p}\right)^{-1 / p} d t=\frac{2 \pi}{p \sin (\pi / p)}
$$

It is convenient to extend the above definition by setting $\pi_{p}=+\infty$ for $0<p \leq 1$. We will adopt this convention throughout the paper. In this way the function $y \rightarrow \sin _{p}(y)$ is strictly increasing on $\left[0, \pi_{p} / 2\right]$ with $\sin _{p}(0)=0$ and $\sin _{p}\left(\pi_{p} / 2\right)=1$ in analogy with the usual sine. It is easily seen that $p \rightarrow \pi_{p}$ is strictly decreasing on $(1, \infty)$ and maps this interval onto itself. For $p>1$ the definition is extended to $\left[0, \pi_{p}\right]$ by

$$
\sin _{p}(y)=\sin \left(\pi_{p}-y\right) \quad \text { for } y \in\left[\pi_{p} / 2, \pi_{p}\right] ;
$$

further extension to $\left[-\pi_{p}, \pi_{p}\right.$] is made by oddness; finally $\sin _{p}$ is extended to the whole \mathbb{R} by $2 \pi_{p}$ periodicity. If $p \in(0,1]$ the inverse of $F_{p}(x)$ is defined on \mathbb{R}_{+}and we just need oddness to extend the definition to the whole real line. The limiting cases are (see also [8]):

$$
\begin{equation*}
\sin _{0}(y)=0 \quad \text { on } \mathbb{R}, \quad \sin _{1}(y)=1-e^{-y} \quad \text { on } \mathbb{R}_{+}, \quad \sin _{\infty}(y)=y \quad \text { on }[0,1] . \tag{2}
\end{equation*}
$$

Since

$$
\begin{equation*}
\frac{d}{d y} \sin _{p}(y)=\left(\frac{d F_{p}(x)}{d x}\right)_{\mid x=\sin _{p}(y)}^{-1}=\left(1-\left[\sin _{p}(y)\right]^{p}\right)^{1 / p} \tag{3}
\end{equation*}
$$

we get $\sin _{p}^{\prime}(0)=1$ and $\sin _{p}^{\prime}\left(\pi_{p} / 2\right)=0$, which shows that $\sin _{p}(y)$ is continuously differentiable on \mathbb{R} for all $p>0$. The continuous derivative above is naturally called the generalized cosine:

$$
\begin{equation*}
\cos _{p}(y)=\frac{d}{d y} \sin _{p}(y), \quad y \in \mathbb{R} \tag{4}
\end{equation*}
$$

When $y \in\left[0, \pi_{p} / 2\right]$ (for $p>1$) and $y \in \mathbb{R}_{+}$(for $0<p \leq 1$) we can also define $\cos _{p}(y)$ by the right hand side of (3) which leads to an integral representation for $\arccos _{p}$:

$$
\cos _{p}(y)=x=\left(1-\left[\sin _{p}(y)\right]^{p}\right)^{1 / p} \Rightarrow y=\arcsin _{p}\left(\left(1-x^{p}\right)^{1 / p}\right)=\int_{0}^{\left(1-x^{p}\right)^{\frac{1}{p}}} \frac{d t}{\left(1-t^{p}\right)^{1 / p}},
$$

or, by substitution $s=\left(1-t^{p}\right)^{1 / p}$,

$$
\begin{equation*}
y=\arccos _{p}(x)=\int_{0}^{\left(1-x^{p}\right)^{\frac{1}{p}}} \frac{d t}{\left(1-t^{p}\right)^{1 / p}}=\int_{x}^{1} \frac{s^{p-2} d s}{\left(1-s^{p}\right)^{1-\frac{1}{p}}}, \quad 0 \leq x \leq 1 . \tag{5}
\end{equation*}
$$

The function $\cos _{p}$ can now be defined on $\left[0, \pi_{p} / 2\right]$ as the inverse function to $\arccos { }_{p}$ and extended to \mathbb{R} by evenness and $2 \pi_{p}$ periodicity. The limiting values for $p=0,1, \infty$ can be obtained by differentiating (2). Pursuing an analogy with trigonometric functions further, the generalized tangent function is defined by

$$
\begin{equation*}
\tan _{p}(y)=\frac{\sin _{p}(y)}{\cos _{p}(y)}, \tag{6}
\end{equation*}
$$

where $y \in \mathbb{R} \backslash\left\{(\mathbb{Z}+1 / 2) \pi_{p}\right\}$ if $p>1$. If $0<p \leq 1$ the function $\tan _{p}(y)$ is continuous on \mathbb{R}. It is easy to show by differentiation that $\tan _{p}(y)$ is the inverse function to

$$
\begin{equation*}
\arctan _{p}(x)=\int_{0}^{x} \frac{d t}{1+t^{p}}, \quad 0 \leq x<\infty \tag{7}
\end{equation*}
$$

https://daneshyari.com/en/article/4615593

Download Persian Version:
https://daneshyari.com/article/4615593

Daneshyari.com

[^0]: * Corresponding author at: Institute of Applied Mathematics, FEBRAS, 7 Radio street, Vladivostok, 690041, Russia. E-mail addresses: dimkrp@gmail.com (D.B. Karp), pril-elena@yandex.ru (E.G. Prilepkina).

