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We study the convexity properties of the generalized trigonometric functions viewed 
as functions of the parameter. We show that p → sinp(y) and p → cosp(y) are 
log-concave on the appropriate intervals while p → tanp(y) is log-convex. We also 
prove similar facts about the generalized hyperbolic functions. In particular, our 
results settle a major part of the conjecture recently put forward in [4].
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1. Introduction and preliminaries

The symbol R+ will mean [0, ∞). There are several ways in the literature to define generalized trigonomet-
ric functions (see, for instance, [11,12,17,18,24]). We will stick with the definition adopted in the book [16]. 
For p > 0 define a differentiable function Fp : [0, 1) → R+ by

Fp(x) =
x∫

0

(
1 − tp

)−1/p
dt. (1)

Clearly, F2 = arcsin so that Fp can be viewed as generalized arcsine Fp(x) = arcsinp(x). Since Fp is strictly 
increasing it has an inverse denoted by sinp. In all the references we could find the range of p is restricted to 
(1, ∞) because only in this case sinp(x) can be made periodic like usual sine. Nothing prohibits, however, 
defining sinp(x) for all p > 0, so we will be dealing with such generalized case here. If p > 1 the function 
sinp(x) is defined on the interval [0, πp/2], where
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πp = 2
1∫

0

(
1 − tp

)−1/p
dt = 2π

p sin(π/p) .

It is convenient to extend the above definition by setting πp = +∞ for 0 < p ≤ 1. We will adopt this 
convention throughout the paper. In this way the function y → sinp(y) is strictly increasing on [0, πp/2]
with sinp(0) = 0 and sinp(πp/2) = 1 in analogy with the usual sine. It is easily seen that p → πp is strictly 
decreasing on (1, ∞) and maps this interval onto itself. For p > 1 the definition is extended to [0, πp] by

sinp(y) = sin(πp − y) for y ∈ [πp/2, πp];

further extension to [−πp, πp] is made by oddness; finally sinp is extended to the whole R by 2πp periodicity. 
If p ∈ (0, 1] the inverse of Fp(x) is defined on R+ and we just need oddness to extend the definition to the 
whole real line. The limiting cases are (see also [8]):

sin0(y) = 0 on R, sin1(y) = 1 − e−y on R+, sin∞(y) = y on [0, 1]. (2)

Since

d

dy
sinp(y) =

(
dFp(x)
dx

)−1

|x=sinp(y)
=

(
1 −

[
sinp(y)

]p)1/p
, (3)

we get sin′
p(0) = 1 and sin′

p(πp/2) = 0, which shows that sinp(y) is continuously differentiable on R for all 
p > 0. The continuous derivative above is naturally called the generalized cosine:

cosp(y) = d

dy
sinp(y), y ∈ R. (4)

When y ∈ [0, πp/2] (for p > 1) and y ∈ R+ (for 0 < p ≤ 1) we can also define cosp(y) by the right hand side 
of (3) which leads to an integral representation for arccosp:

cosp(y) = x =
(
1 −

[
sinp(y)

]p)1/p ⇒ y = arcsinp

((
1 − xp

)1/p) =
(1−xp)

1
p∫

0

dt

(1 − tp)1/p
,

or, by substitution s = (1 − tp)1/p,

y = arccosp(x) =
(1−xp)

1
p∫

0

dt

(1 − tp)1/p
=

1∫
x

sp−2ds

(1 − sp)1−
1
p

, 0 ≤ x ≤ 1. (5)

The function cosp can now be defined on [0, πp/2] as the inverse function to arccosp and extended to R
by evenness and 2πp periodicity. The limiting values for p = 0, 1, ∞ can be obtained by differentiating (2). 
Pursuing an analogy with trigonometric functions further, the generalized tangent function is defined by

tanp(y) = sinp(y)
cosp(y)

, (6)

where y ∈ R\{(Z +1/2)πp} if p > 1. If 0 < p ≤ 1 the function tanp(y) is continuous on R. It is easy to show 
by differentiation that tanp(y) is the inverse function to

arctanp(x) =
x∫

0

dt

1 + tp
, 0 ≤ x < ∞, (7)
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