The root distribution of polynomials with a three-term recurrence

Khang Tran
Department of Statistics, Truman State University, USA

A R T I C L E I N F O

Article history:
Received 3 March 2014
Available online 31 July 2014
Submitted by D. Khavinson

Keywords:

Root distribution
Three-term recurrence
q-discriminant

A B S T R A C T

For any fixed positive integer n, we study the root distribution of a sequence of polynomials $H_{m}(z)$ satisfying the rational generating function

$$
\sum_{m=0}^{\infty} H_{m}(z) t^{m}=\frac{1}{1+B(z) t+A(z) t^{n}}
$$

where $A(z)$ and $B(z)$ are any polynomials in z with complex coefficients. We show that the roots of $H_{m}(z)$ which satisfy $A(z) \neq 0$ lie on a specific fixed real algebraic curve for all large m.
© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The sequence of polynomials $H_{m}(z)$, generated by the rational function $1 /\left(1+B(z) t+A(z) t^{n}\right)$, has the three-term recurrence relation of degree n

$$
\begin{equation*}
H_{m}(z)+B(z) H_{m-1}(z)+A(z) H_{m-n}(z)=0 \tag{1}
\end{equation*}
$$

and the initial conditions

$$
\begin{equation*}
H_{m}(z)=(-1)^{m} B^{m}(z), \quad 0 \leq m<n \tag{2}
\end{equation*}
$$

For the study of the root distribution of other sequences of polynomials that satisfy three-term recurrences, see $[8,14]$. In $[16]$, the author shows that in the three special cases when $n=2,3$, and 4 , the roots of $H_{m}(z)$ which satisfy $A(z) \neq 0$ will lie on the curve \mathcal{C} defined in Theorem 1 , and are dense there as $m \rightarrow \infty$. This paper shows that for any fixed integer n, this result holds for all large m in the theorem below.

[^0]

Fig. 1. Distribution of the quotients of roots of the hexic denominator.

Theorem 1. Let $H_{m}(z)$ be a sequence of polynomials whose generating function is

$$
\sum_{m=0}^{\infty} H_{m}(z) t^{m}=\frac{1}{1+B(z) t+A(z) t^{n}}
$$

where $A(z)$ and $B(z)$ are polynomials in z with complex coefficients. There is a constant $C=C(n)$ such that for all $m>C$, the roots of $H_{m}(z)$ which satisfy $A(z) \neq 0$ lie on a fixed curve \mathcal{C} given by

$$
\Im \frac{B^{n}(z)}{A(z)}=0 \quad \text { and } \quad 0 \leq(-1)^{n} \Re \frac{B^{n}(z)}{A(z)} \leq \frac{n^{n}}{(n-1)^{n-1}}
$$

and are dense there as $m \rightarrow \infty$.

This theorem holds when the numerator of the generating function is a monomial in t and z. For a general numerator, it appears, in an unpublished joint work with Robert Boyer, that the set of roots will approach \mathcal{C} and a possible finite set in the Hausdorff metric on the non-empty compact subsets. For more study of sequences of polynomials whose roots approach fixed curves, see [6,7]. Other studies of the limits of zeros of polynomials satisfying a linear homogeneous recursion whose coefficients are polynomials in z are given in $[4,5]$.

An important trinomial is $y^{m}-m y+m-1$. Its fundamental role in the study of inequalities is pointed out in both [3] and [13]. This paper shows that a " θ-analogue" of this $(\theta=0)$ trinomial is fundamental for the study of polynomials generated by rational functions whose denominators are trinomials. Some further information about trinomials is available in [9]. It is also noteworthy that although there is no really concise formula for the discriminant of a general polynomial in terms of its coefficients, there is such a formula for the discriminant of a trinomial [11, pp. 406-407]. Here we develop, in the fashion of Ismail, a q-analogue of this discriminant formula. This plays a fundamental role in the determination of the curve \mathcal{C}.

Our main approach is to count the number of roots of $H_{m}(z)$ on the curve \mathcal{C} and show that this number equals the degree of this polynomial. This number of roots connects with the number of quotients of roots in t of the denominator $1+B(z) t+A(z) t^{n}$ on a portion of the unit circle. The plot of these quotients when $n=6$ and $m=30$ is given in Fig. 1. Although the curve \mathcal{C} depends on $A(z)$ and $B(z)$, it will be seen that this plot of the quotients is independent of these two polynomials.

https://daneshyari.com/en/article/4615621

Download Persian Version:

https://daneshyari.com/article/4615621

Daneshyari.com

[^0]: http://dx.doi.org/10.1016/j.jmaa.2014.07.066
 0022-247X/© 2014 Elsevier Inc. All rights reserved.

