

Some remarks on the asymptotic profiles of solutions for strongly damped wave equations on the 1-D half space

Ryo Ikehata
Department of Mathematics, Graduate School of Education, Hiroshima University, Higashi-Hiroshima 739-8524, Japan

A R T I C L E I N F O

Article history:
Received 8 April 2014
Available online 30 July 2014
Submitted by Steven G. Krantz
Keywords:
Wave equation
Strong damping
Mixed problem
Fourier analysis
Asymptotic profiles
Weighted L^{1}-initial data

Abstract

We consider a mixed problem with the Dirichlet null boundary conditions on the 1-dimensional half space $(0,+\infty)$. We will derive an asymptotic profiles of the corresponding solutions in the case when the initial data belong to a weighted $L^{1,2}(0, \infty)$ space by employing a method recently introduced in [7] or [8].

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

We are concerned with the Cauchy problem for strongly damped wave equations in $(0,+\infty)$:

$$
\begin{gather*}
u_{t t}(t, x)-u_{x x}(t, x)-u_{x x t}(t, x)=0, \quad(t, x) \in(0, \infty) \times(0,+\infty) \tag{1.1}\\
u(0, x)=u_{0}(x), \quad u_{t}(0, x)=u_{1}(x), \quad x \in(0,+\infty) \tag{1.2}\\
u(t, 0)=0, \quad t \in(0,+\infty) \tag{1.3}
\end{gather*}
$$

where the initial data u_{0} and u_{1} can be chosen such as

$$
\left[u_{0}, u_{1}\right] \in H_{0}^{1}(0, \infty) \times L^{2}(0, \infty)
$$

The unique existence of weak solution $u \in C\left([0,+\infty) ; H_{0}^{1}(0, \infty)\right) \cap C^{1}\left([0,+\infty) ; L^{2}(0, \infty)\right)$ to (1.1)-(1.3) can be discussed by the method due to [10]. For the solution $u(t, x)$ and the initial data $\left(u_{0}, u_{1}\right)$ we can consider the odd extension of $u(t, x)$ and $u_{j}(x)(j=0,1)$ to the whole space $(-\infty, \infty)$ as follows:

[^0]\[

v(t, x)= $$
\begin{cases}u(t, x) & x \geq 0 \\ -u(t,-x) & x<0\end{cases}
$$
\]

and for $j=0,1$,

$$
v_{j}(x)= \begin{cases}u_{j}(x) & x \geq 0 \\ -u_{j}(-x) & x<0 .\end{cases}
$$

It is easy to check that the function $v(t, x)$ becomes a solution to the Cauchy problem below:

$$
\begin{gather*}
v_{t t}(t, x)-v_{x x}(t, x)-v_{x x t}(t, x)=0, \quad(t, x) \in(0, \infty) \times \mathbf{R}, \tag{1.4}\\
v(0, x)=v_{0}(x), \quad v_{t}(0, x)=v_{1}(x), \quad x \in \mathbf{R} . \tag{1.5}
\end{gather*}
$$

It should be noticed that the initial data $v_{j}(x)(j=0,1)$ and the solution $v(t, x)$ satisfy

$$
\begin{equation*}
\int_{\mathbf{R}} v_{j}(x) d x=0 \quad(j=0,1), \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathbf{R}} v(t, x) d x=0, \quad t>0 . \tag{1.7}
\end{equation*}
$$

By the way, recently Ikehata proved the following result in [8]. In fact, he has dealt with the more general dimensional case.

Theorem 1.1. (See [8].) If $\left[v_{0}, v_{1}\right] \in\left(H^{1}(\mathbf{R}) \cap L^{1,1}(\mathbf{R})\right) \times\left(L^{2}(\mathbf{R}) \cap L^{1,1}(\mathbf{R})\right)$, then the solution $v(t, x)$ to problem (1.4)-(1.5) satisfies

$$
\begin{aligned}
& \int_{\mathbf{R}}\left|\mathcal{F}(v(t, \cdot))(\xi)-\left\{P_{1} e^{-t|\xi|^{2} / 2} \frac{\sin (t|\xi|)}{|\xi|}+P_{0} e^{-t|\xi|^{2} / 2} \cos (t|\xi|)\right\}\right|^{2} d \xi \\
& \quad \leq C\left(\left\|v_{1}\right\|_{1}^{2}+\left\|v_{0}\right\|_{1}^{2}\right) t^{-\frac{1}{2}}+C\left\|v_{1}\right\|_{1,1}^{2} t^{-\frac{1}{2}}+C\left\|v_{0}\right\|_{1,1}^{2} t^{-\frac{3}{2}}+C e^{-\alpha t}\left(\left\|v_{1}\right\|^{2}+\left\|v_{0}\right\|^{2}\right)
\end{aligned}
$$

with some constants $\alpha>0$ and $C>0$, where

$$
P_{0}:=\int_{\mathbf{R}^{n}} v_{0}(x) d x, \quad P_{1}:=\int_{\mathbf{R}^{n}} v_{1}(x) d x .
$$

Unfortunately, in our case we have an unlucky property shown by (1.6), that is to say, if one applies Theorem 1.1 to problem (1.4)-(1.5) one can have nothing about the asymptotic profiles of the solution $v(t, x)$ because of (1.6) $\left(P_{0}=P_{1}=0\right)$. This implies that we can know nothing about the asymptotic profile of the original solution $u(t, x)$, which satisfies $u(t, x)=\left.v(t, x)\right|_{x \geq 0}$. In connection with this, recently Said-Houari [13] studied asymptotic profiles of solutions for the Cauchy problem of the usual damped wave equation:

$$
u_{t t}-\Delta u+u_{t}=0, \quad t>0, x \in \mathbf{R}^{n}
$$

together with initial data $\left[u_{0}, u_{1}\right]$ satisfying $\int_{\mathbf{R}^{n}} u_{j}(x) d x=0(j=0,1)$ plus weight conditions.
The purpose of this paper is to remake Theorem 1.1 in order to catch asymptotic profiles of solutions to problem (1.4)-(1.5) with (1.6), and is to apply the obtained result to the original half space problem (1.1)-(1.3) in order to know the profiles of the solution $u(t, x)$ as $t \rightarrow+\infty$. The restriction to the one

https://daneshyari.com/en/article/4615623

Download Persian Version:

https://daneshyari.com/article/4615623

Daneshyari.com

[^0]: E-mail address: ikehatar@hiroshima-u.ac.jp.
 http://dx.doi.org/10.1016/j.jmaa.2014.07.055
 0022-247X/© 2014 Elsevier Inc. All rights reserved.

