Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Linearity of the volume. Looking for a characterization of sausages $\stackrel{\bigstar}{\Rightarrow}$

Eugenia Saorín Gómez^{a,*}, Jesús Yepes Nicolás^b

^a Institut für Algebra und Geometrie, Otto-von-Guericke Universität Magdeburg, Universitätsplatz 2,

D-39106 Magdeburg, Germany

^b Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain

ARTICLE INFO

Article history: Received 3 February 2014 Available online 30 July 2014 Submitted by J. Bastero

Keywords: Linearity of volume Sausages Brunn–Minkowski inequality Roots of Steiner polynomial Inner parallel body Linearity of determinant

ABSTRACT

Let K, E, L be convex bodies, dim $L \leq 1$ and K = L + E, a sausage. In this case $\operatorname{vol}(\lambda K + (1 - \lambda)E) = \lambda \operatorname{vol}(K) + (1 - \lambda) \operatorname{vol}(E)$. We prove that under the sole assumption that K and E have an equal volume projection (or a common maximal volume section), if the above equality holds for just one value in (0, 1), then K = L + E with dim $L \leq 1$. However, even having equality for all $\lambda \in [0, 1]$, if no extra assumption on K, E is done, such a characterization is not possible. This problem is connected with a conjecture relating the roots of the Steiner polynomial of a pair of convex bodies to their relative inradius. Counterexamples for the general case are explicitly given. In the same line, a counterexample to a conjecture by Matheron on inner parallel bodies is also shown.

@ 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathcal{K}^n be the set of all convex bodies, i.e., non-empty compact convex sets, not necessarily with nonempty interior, in the *n*-dimensional Euclidean space \mathbb{R}^n . The *n*-dimensional volume of a measurable set $M \subseteq \mathbb{R}^n$, i.e., its *n*-dimensional Lebesgue measure, is denoted by $\operatorname{vol}(M)$ (or $\operatorname{vol}_n(M)$ if the distinction of the dimension is useful). With dim M, conv M and aff M we represent its dimension (namely, the dimension of its affine hull), convex hull and affine hull, respectively. We denote by B_n the *n*-dimensional Euclidean unit ball, by \mathbb{S}^{n-1} its boundary and, in particular, we write $\kappa_n = \operatorname{vol}(B_n)$. Finally, the set of all *k*-dimensional (linear) planes of \mathbb{R}^n is denoted by \mathcal{L}^n_k , and for $H \in \mathcal{L}^n_k$, $K \in \mathcal{K}^n$, the orthogonal projection of K onto H is denoted by K|H and with $H^{\perp} \in \mathcal{L}^n_{n-k}$ we represent the orthogonal complement of H.

The volume of a positive linear combination of two convex bodies $K, E \in \mathcal{K}^n, \mu, \lambda \ge 0$, is a homogeneous polynomial of degree n in μ and λ , namely

 $^{^{*}}$ First author is supported by Dirección General de Investigación MTM2011-25377 MCIT and FEDER. Second author is supported by MINECO project MTM2012-34037. Both of them are also supported by "Programa de Ayudas a Grupos de Excelencia de la Región de Murcia", Fundación Séneca, 04540/GERM/06.

^{*} Corresponding author.

E-mail addresses: eugenia.saorin@ovgu.de (E. Saorín Gómez), jesus.yepes@um.es (J. Yepes Nicolás).

$$\operatorname{vol}(\mu K + \lambda E) = \sum_{i=0}^{n} \binom{n}{i} W_{i}(K; E) \mu^{n-i} \lambda^{i}.$$
(1.1)

The coefficients $W_i(K; E)$ are the relative quermassintegrals of K with respect to E, and they are a special case of the more general defined mixed volumes for which we refer to [17, Section 5.1]. In particular, we have $W_0(K; E) = vol(K)$, $W_n(K; E) = vol(E)$ and $W_i(K; E) = W_{n-i}(E; K)$. If $\mu = 1$ in (1.1) then the above expression is known as the (relative) Steiner polynomial or Steiner formula of K (with respect to E).

Let us consider $V_{K;E}(\lambda) = \operatorname{vol}(\lambda K + (1 - \lambda)E)$ the volume of the convex combination of $K, E \in \mathcal{K}^n$ for $\lambda \in [0, 1]$. From (1.1) follows that $V_{K;E}(\lambda)$ is a polynomial of degree (at most) n, namely,

$$\mathbf{V}_{K;E}(\lambda) = \sum_{i=0}^{n} \binom{n}{i} \mathbf{W}_{i}(K;E) \lambda^{n-i} (1-\lambda)^{i}.$$

Brunn–Minkowski's inequality (for an extensive and beautiful survey on this inequality we refer to [8]) ensures that the function $V_{K;E}^{1/n}$ defined on $\lambda \in [0, 1]$ is concave. It is known that under special assumptions on the convex bodies K, E ([4, Section 50], [16], [9, Subsection 1.2.4], [13]) the classic Brunn–Minkowski inequality can be refined obtaining that

$$V_{K;E}(\lambda) \ge \lambda \operatorname{vol}(K) + (1-\lambda) \operatorname{vol}(E).$$

The first goal along this paper is to understand/characterize the (pairs of) convex bodies K, E for which there is equality in this inequality; i.e., for which the polynomial $V_{K;E}$ has degree one. In this case, we would have

$$V_{K;E}(\lambda) = \lambda \operatorname{vol}(K) + (1 - \lambda) \operatorname{vol}(E), \qquad (1.2)$$

and we will say that $V_{K;E}$ is linear in $\lambda \in [0, 1]$. From now on, whenever we refer to linearity of the volume we will be meaning (1.2).

The formal polynomial expression in the complex variable z

$$f_{K;E}(z) = \sum_{i=0}^{n} \binom{n}{i} W_i(K;E) z^i, \qquad (1.3)$$

is known as the (relative) Steiner polynomial of K with respect to E. Notice that for $z \ge 0$ it provides the volume of K + zE (cf. (1.1)).

Let r(K; E) denote the (relative) inradius of K (with respect to E), i.e., $r(K; E) = \max\{\lambda \ge 0: x + \lambda E \subset K$ for some $x \in \mathbb{R}^n\}$. For the sake of brevity, we will say that the pair of convex bodies K, E is a sausage if either K = L + E where $L \in \mathcal{K}^n$ with dim $L \le 1$ or E = L + K where $L \in \mathcal{K}^n$ with dim $L \le 1$.

In [10], the following statement was conjectured

Conjecture 1.1. Let $K \in \mathcal{K}^n$ with inradius $r(K; B_n) = 1$. Then -1 is an (n-1)-fold root of $f_{K;B_n}$ if and only if K is a sausage with respect to B_n , i.e., $K = L + B_n$ where $L \in \mathcal{K}^n$ with dim $L \leq 1$.

Bonnesen's inequality in the plane establishes that

$$W_0(K;E) - 2W_1(K;E)r(K;E) + W_2(K;E)r(K;E)^2 \le 0,$$
(1.4)

with equality if and only if K = L + r(K; E)E with $L \in \mathcal{K}^n$ so that dim $L \leq 1$ (the inequality was first proved by Bonnesen when $E = B_2$ in [3], and Blaschke generalized it to an arbitrary so-called *gauge* body Ein the plane in [2, pp. 33–36]). Thus, Conjecture 1.1 is true in dimension 2 for any gauge body E.

1082

Download English Version:

https://daneshyari.com/en/article/4615640

Download Persian Version:

https://daneshyari.com/article/4615640

Daneshyari.com