

Linearity of the volume. Looking for a characterization of sausages **

Eugenia Saorín Gómez ${ }^{\text {a,* }}$, Jesús Yepes Nicolás ${ }^{\text {b }}$
${ }^{\text {a }}$ Institut für Algebra und Geometrie, Otto-von-Guericke Universität Magdeburg, Universitätsplatz 2,
D-39106 Magdeburg, Germany
b Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain

A R T I C L E I N F O

Article history:

Received 3 February 2014
Available online 30 July 2014
Submitted by J. Bastero
Keywords:
Linearity of volume
Sausages
Brunn-Minkowski inequality
Roots of Steiner polynomial
Inner parallel body
Linearity of determinant

Abstract

Let K, E, L be convex bodies, $\operatorname{dim} L \leq 1$ and $K=L+E$, a sausage. In this case $\operatorname{vol}(\lambda K+(1-\lambda) E)=\lambda \operatorname{vol}(K)+(1-\lambda) \operatorname{vol}(E)$. We prove that under the sole assumption that K and E have an equal volume projection (or a common maximal volume section), if the above equality holds for just one value in $(0,1)$, then $K=L+E$ with $\operatorname{dim} L \leq 1$. However, even having equality for all $\lambda \in[0,1]$, if no extra assumption on K, E is done, such a characterization is not possible. This problem is connected with a conjecture relating the roots of the Steiner polynomial of a pair of convex bodies to their relative inradius. Counterexamples for the general case are explicitly given. In the same line, a counterexample to a conjecture by Matheron on inner parallel bodies is also shown.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathcal{K}^{n} be the set of all convex bodies, i.e., non-empty compact convex sets, not necessarily with nonempty interior, in the n-dimensional Euclidean space \mathbb{R}^{n}. The n-dimensional volume of a measurable set $M \subsetneq \mathbb{R}^{n}$, i.e., its n-dimensional Lebesgue measure, is denoted by $\operatorname{vol}(M)$ (or $\operatorname{vol}_{n}(M)$ if the distinction of the dimension is useful). With $\operatorname{dim} M$, conv M and aff M we represent its dimension (namely, the dimension of its affine hull), convex hull and affine hull, respectively. We denote by B_{n} the n-dimensional Euclidean unit ball, by \mathbb{S}^{n-1} its boundary and, in particular, we write $\kappa_{n}=\operatorname{vol}\left(B_{n}\right)$. Finally, the set of all k-dimensional (linear) planes of \mathbb{R}^{n} is denoted by \mathcal{L}_{k}^{n}, and for $H \in \mathcal{L}_{k}^{n}, K \in \mathcal{K}^{n}$, the orthogonal projection of K onto H is denoted by $K \mid H$ and with $H^{\perp} \in \mathcal{L}_{n-k}^{n}$ we represent the orthogonal complement of H.

The volume of a positive linear combination of two convex bodies $K, E \in \mathcal{K}^{n}, \mu, \lambda \geq 0$, is a homogeneous polynomial of degree n in μ and λ, namely

[^0]\[

$$
\begin{equation*}
\operatorname{vol}(\mu K+\lambda E)=\sum_{i=0}^{n}\binom{n}{i} \mathrm{~W}_{i}(K ; E) \mu^{n-i} \lambda^{i} . \tag{1.1}
\end{equation*}
$$

\]

The coefficients $\mathrm{W}_{i}(K ; E)$ are the relative quermassintegrals of K with respect to E, and they are a special case of the more general defined mixed volumes for which we refer to [17, Section 5.1]. In particular, we have $\mathrm{W}_{0}(K ; E)=\operatorname{vol}(K), \mathrm{W}_{n}(K ; E)=\operatorname{vol}(E)$ and $\mathrm{W}_{i}(K ; E)=\mathrm{W}_{n-i}(E ; K)$. If $\mu=1$ in (1.1) then the above expression is known as the (relative) Steiner polynomial or Steiner formula of K (with respect to E).

Let us consider $\mathrm{V}_{K ; E}(\lambda)=\operatorname{vol}(\lambda K+(1-\lambda) E)$ the volume of the convex combination of $K, E \in \mathcal{K}^{n}$ for $\lambda \in[0,1]$. From (1.1) follows that $\mathrm{V}_{K ; E}(\lambda)$ is a polynomial of degree (at most) n, namely,

$$
\mathrm{V}_{K ; E}(\lambda)=\sum_{i=0}^{n}\binom{n}{i} \mathrm{~W}_{i}(K ; E) \lambda^{n-i}(1-\lambda)^{i} .
$$

Brunn-Minkowski's inequality (for an extensive and beautiful survey on this inequality we refer to [8]) ensures that the function $\mathrm{V}_{K ; E}^{1 / n}$ defined on $\lambda \in[0,1]$ is concave. It is known that under special assumptions on the convex bodies K, E ([4, Section 50], [16], [9, Subsection 1.2.4], [13]) the classic Brunn-Minkowski inequality can be refined obtaining that

$$
\mathrm{V}_{K ; E}(\lambda) \geq \lambda \operatorname{vol}(K)+(1-\lambda) \operatorname{vol}(E)
$$

The first goal along this paper is to understand/characterize the (pairs of) convex bodies K, E for which there is equality in this inequality; i.e., for which the polynomial $\mathrm{V}_{K ; E}$ has degree one. In this case, we would have

$$
\begin{equation*}
\mathrm{V}_{K ; E}(\lambda)=\lambda \operatorname{vol}(K)+(1-\lambda) \operatorname{vol}(E), \tag{1.2}
\end{equation*}
$$

and we will say that $\mathrm{V}_{K ; E}$ is linear in $\lambda \in[0,1]$. From now on, whenever we refer to linearity of the volume we will be meaning (1.2).

The formal polynomial expression in the complex variable z

$$
\begin{equation*}
f_{K ; E}(z)=\sum_{i=0}^{n}\binom{n}{i} \mathrm{~W}_{i}(K ; E) z^{i}, \tag{1.3}
\end{equation*}
$$

is known as the (relative) Steiner polynomial of K with respect to E. Notice that for $z \geq 0$ it provides the volume of $K+z E$ (cf. (1.1)).

Let $\mathrm{r}(K ; E)$ denote the (relative) inradius of K (with respect to E), i.e., $\mathrm{r}(K ; E)=\max \{\lambda \geq 0: x+\lambda E \subset K$ for some $\left.x \in \mathbb{R}^{n}\right\}$. For the sake of brevity, we will say that the pair of convex bodies K, E is a sausage if either $K=L+E$ where $L \in \mathcal{K}^{n}$ with $\operatorname{dim} L \leq 1$ or $E=L+K$ where $L \in \mathcal{K}^{n}$ with $\operatorname{dim} L \leq 1$.

In [10], the following statement was conjectured
Conjecture 1.1. Let $K \in \mathcal{K}^{n}$ with inradius $\mathrm{r}\left(K ; B_{n}\right)=1$. Then -1 is an $(n-1)$-fold root of $f_{K ; B_{n}}$ if and only if K is a sausage with respect to B_{n}, i.e., $K=L+B_{n}$ where $L \in \mathcal{K}^{n}$ with $\operatorname{dim} L \leq 1$.

Bonnesen's inequality in the plane establishes that

$$
\begin{equation*}
\mathrm{W}_{0}(K ; E)-2 \mathrm{~W}_{1}(K ; E) \mathrm{r}(K ; E)+\mathrm{W}_{2}(K ; E) \mathrm{r}(K ; E)^{2} \leq 0, \tag{1.4}
\end{equation*}
$$

with equality if and only if $K=L+\mathrm{r}(K ; E) E$ with $L \in \mathcal{K}^{n}$ so that $\operatorname{dim} L \leq 1$ (the inequality was first proved by Bonnesen when $E=B_{2}$ in [3], and Blaschke generalized it to an arbitrary so-called gauge body E in the plane in [2, pp. 33-36]). Thus, Conjecture 1.1 is true in dimension 2 for any gauge body E.

https://daneshyari.com/en/article/4615640

Download Persian Version:
https://daneshyari.com/article/4615640

Daneshyari.com

[^0]: में First author is supported by Dirección General de Investigación MTM2011-25377 MCIT and FEDER. Second author is supported by MINECO project MTM2012-34037. Both of them are also supported by "Programa de Ayudas a Grupos de Excelencia de la Región de Murcia", Fundación Séneca, 04540/GERM/06.

 * Corresponding author.

 E-mail addresses: eugenia.saorin@ovgu.de (E. Saorín Gómez), jesus.yepes@um.es (J. Yepes Nicolás).

