Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

On a family of integrals that extend the Askey–Wilson integral

Masahiko Ito ^a, N.S. Witte ^b*,*[∗]

^a School of Science and Technology for Future Life, Tokyo Denki University, Tokyo 101-8457, Japan
^b Department of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia

A R T I C L E I N F O A B S T R A C T

Article history: Received 15 May 2014 Available online 30 July 2014 Submitted by M.J. Schlosser

Keywords: Non-uniform lattices Divided difference operators Orthogonal polynomials Semi-classical weights Askey–Wilson polynomials Basic hypergeometric integrals

We study a family of integrals parameterised by $N = 2, 3, \ldots$ generalising the Askey-Wilson integral $N = 2$ which has arisen in the theory of *q*-analogs of monodromy preserving deformations of linear differential systems and in theory of the Baxter *Q* operator for the *XXZ* open quantum spin chain. These integrals are particular examples of moments defined by weights generalising the Askey–Wilson weight and we show the integrals are characterised by various (*N* −1)-th order linear *q*-difference equations which we construct. In addition we demonstrate that these integrals can be evaluated as a finite sum of $(N - 1)$ *BC*₁-type Jackson integrals or $2N+2\varphi_{2N+1}$ basic hypergeometric functions.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The Askey–Wilson integral occupies an important position in the theory of *q*-integrals and *q*-Selberg integrals because the underlying weight stands at the head of the Askey Table of basic and ordinary hypergeometric function orthogonal polynomial systems. We recall the Askey–Wilson weight [\[1\]](#page--1-0) itself has four parameters $\{a_1, \ldots, a_4\}$ with base *q*

$$
w(x) = w(x; \{a_1, \dots, a_4\}) = \frac{(z^2, z^{-2}; q)_{\infty}}{\sin(\theta) \prod_{j=1}^4 (a_j z, a_j z^{-1}; q)_{\infty}},
$$

$$
z = e^{i\theta}, \ x = \frac{1}{2}(z + z^{-1}) = \cos \theta \in \mathfrak{G} = (-1, 1).
$$
 (1.1)

We also recall that the Askey–Wilson integral is defined by

$$
I_2(a_1, a_2, a_3, a_4) := \int_{\mathbb{T}} \frac{dz}{2\pi \sqrt{-1}z} \frac{(z^{\pm 2}; q)_{\infty}}{\prod_{j=1}^4 (a_j z^{\pm 1}; q)_{\infty}},
$$

* Corresponding author.

E-mail addresses: mito@cck.dendai.ac.jp (M. Ito), nsw@ms.unimelb.edu.au (N.S. Witte).

with $|a_j| < 1$ for $j = 1, \ldots, 4$ and has the evaluation

$$
I_2(a_1, a_2, a_3, a_4) = 2 \frac{(a_1 a_2 a_3 a_4; q)_{\infty}}{(q; q)_{\infty} \prod_{1 \le j < k \le 4} (a_j a_k; q)_{\infty}}.
$$

We employ the standard notations for the *q* Pochhammer symbol, their products, the *q*-binomial coefficient and the elliptic theta function

$$
(a;q)_n = \prod_{k=0}^{n-1} (1 - aq^k),
$$

$$
(a;q)_{\infty} = \prod_{k=0}^{\infty} (1 - aq^k),
$$

$$
(a_1, a_2, a_3, \dots; q)_n = (a_1; q)_n (a_2; q)_n (a_3; q)_n \dots,
$$

$$
(az^{\pm 1}; q)_{\infty} = (az, az^{-1}; q)_{\infty},
$$

$$
\begin{bmatrix} n \\ m \end{bmatrix}_q = \frac{(q;q)_n}{(q;q)_m (q;q)_{n-m}}, \quad m = 0, 1, \dots, n \in \mathbb{N},
$$

$$
\theta(z;q) := (z;q)_{\infty} (qz^{-1}; q)_{\infty}.
$$

Also $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ and we will invariably assume that $|q| < 1$, and other conditions on a_1, a_2, \ldots to ensure convergence of the infinite products.

Our study treats a family of integrals that extend the Askey–Wilson integral in a direction not considered before. The next member of such a family is (labelled as *N* = 3 whereas the Askey–Wilson integral is labelled by $N = 2$

$$
I_3(a_1,\ldots,a_6) := \int_{\mathbb{T}\cup\mathbb{H}} \frac{dz}{2\pi\sqrt{-1}z} \frac{z-z^{-1}}{z^{3/2}-z^{-3/2}} \frac{(z^{\pm 3};q^{3/2})_{\infty}}{\prod_{j=1}^6 (a_j z^{\pm 1};q)_{\infty}},\tag{1.2}
$$

where the contour integral is the sum of a circular integral and a "tail" integral. This integrand possesses sequences of poles which accumulate at either $z = \infty$ and $z = 0$, so the contour T can separate these two sets if $|a_i|$ < 1 and circle the origin in an anti-clockwise direction, as occurs in the Askey–Wilson case. Let us define $a_j = q^{s_j}$, so that in the usual case $|q| < 1$ we require also that $\text{Re}(s_j) > 0$ for $j = 1, \ldots, 6$. However this integrand also has a branch cut, conventionally taken to be $(-\infty, 0)$ and so we take the contour path to be of a Hankel type with a tail H starting at $\infty e^{-\pi i}$ and ending at $\infty e^{+\pi i}$. This contribution involves an integral on [1, ∞) with an integrand whose leading term as $x \to \infty$ is

$$
-\frac{1}{\pi}\exp\biggl(\frac{8\pi^2}{9\log q}\biggr)q^{\frac{3}{8}+\frac{1}{2}\sum_{j=1}^6s_j(s_j-1)}\bigl(1-x^{-2}\bigr)x^{-3+\sum_{j=1}^6s_j}\prod_{j=1}^6\frac{(-q^{1-s_j}x^{-1};q)_\infty}{(-q^{s_j}x^{-1};q)_\infty},
$$

where we have employed the asymptotic expansion of [\[27\],](#page--1-0) which is valid for $|\arg(a_j)| \leq \pi$. This integral clearly converges under the additional condition that $\sum_{j=1}^{6} \text{Re}(s_j) < 2$. Clearly from the prefactors of the above expression the contribution from the tail is exponentially small as $q \to 1^-$.

Our aim, in fact, is to study the generalisations for $N \geq 3$, namely

$$
I_N = I_N(a_1, \dots, a_{2N}) := \int_{\mathbb{T} \cup \mathbb{H}} \frac{dz}{2\pi \sqrt{-1}z} \frac{z - z^{-1}}{z^{N/2} - z^{-N/2}} \frac{(z^{\pm N}; q^{N/2})_{\infty}}{\prod_{j=1}^{2N} (a_j z^{\pm 1}; q)_{\infty}}.
$$
(1.3)

Download English Version:

<https://daneshyari.com/en/article/4615641>

Download Persian Version:

<https://daneshyari.com/article/4615641>

[Daneshyari.com](https://daneshyari.com)