

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Young's inequality for convolution and its applications in convexand set-valued analysis

Jacek Sadowski

Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Koszykowa 75, Poland

ARTICLE INFO

Article history: Received 24 February 2014 Available online 27 July 2014 Submitted by A. Dontchev

Keywords: Young's inequality Metrics for convex sets Uniform equivalence Multifunction Funk-Radon transform Isoperimetric inequality

ABSTRACT

A version of Young's inequality for convolution is introduced and employed to some topics in convex- and set-valued analysis. The following problems are considered: uniform equivalence of metrics for convex subsets of the Euclidean space, the regularity of set-valued mappings and the continuity of the Funk-Radon transform. Also an isoperimetric inequality based on Young's inequality is introduced.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The goal of this paper is to establish a link between Young's inequality for convolution and some problems in convex- and set-valued analysis. Young's inequality for convolution $I(x) = \int_{\mathbb{R}^n} K(y) f(x-y) \, dy$ asserts that

$$||I||_{L_{\sigma}(\mathbb{R}^n)} \le ||K||_{L_{\sigma}(\mathbb{R}^n)} \cdot ||f||_{L_{\sigma}(\mathbb{R}^n)} \tag{1}$$

provided $K: \mathbb{R}^n \to \mathbb{R}$ and $f: \mathbb{R}^n \to \mathbb{R}$ are mappings such that $K \in L_r(\mathbb{R}^n)$, $f \in L_p(\mathbb{R}^n)$ and $1 \le p \le q \le \infty$, $1 - \frac{1}{p} + \frac{1}{q} = \frac{1}{r}$. This inequality attracted the attention of many authors – for instance, inequality (1) was generalized into an inequality for mappings defined on an abstract group [11]. Other ideas, such as the reverse inequality

$$\exists C \geq 0 \quad \|I\|_{L_q(\mathbb{R}^n)} \geq C \cdot \|K\|_{L_r(\mathbb{R}^n)} \cdot \|f\|_{L_p(\mathbb{R}^n)},$$

have also been introduced in [4]. Our aim is to derive another version of Young's inequality and describe its applications. We begin with the question to derive an analogue of (1) under weaker assumptions. Mappings

E-mail address: j.sadowski@mini.pw.edu.pl.

 $K: \mathbb{R}^n \to \mathbb{R}$ and $f: \mathbb{R}^n \to \mathbb{R}$ are supposed to be at most locally integrable in L_r and in L_p , respectively.

An estimate similar to Young's inequality is introduced. This estimate is employed to investigate a few topics appearing in convex- and set-valued analysis:

- 1. The problem of uniform equivalence of metrics for convex (or star-shaped) subsets of the Euclidean space \mathbb{R}^n .
- 2. Uniform continuity of multifunctions. Let F be a multifunction from a metric space to convex compact subsets of \mathbb{R}^n . If F is uniformly continuous in a metric d_1 with modulus of continuity ω_1 , then Young's inequality is a tool to verify the continuity of F in a metric d_2 and calculate the modulus of continuity of F in metric d_2 .
- 3. Intersection bodies and the Funk–Radon transform a result on the continuity of the Funk–Radon transform.
- 4. Isoperimetric inequalities. An isoperimetric inequality following from Young's inequality is established.

These problems have been studied in the literature and our aim is to develop some of known results using a version of Young's inequality for convolution. Now let us briefly discuss topics introduced above.

1.1. Uniform equivalence of metrics for convex subsets of the Euclidean space \mathbb{R}^n

Apart from the well known Hausdorff distance there are many other metrics for convex subsets of \mathbb{R}^n such as the Demyanov metric, the integral metric, the radial metric or the symmetric difference metric. The relationship between these metrics was studied in [3,8,10,14,17,18,20,25,26] and we would like to extend some of known results.

There are two types of equivalence of metrics: the topological and the uniform equivalence. These concepts are defined as follows: suppose there are a nonempty set \mathcal{A} and metrics d_1 , d_2 on \mathcal{A} . Then metrics d_1 , d_2 are

- 1. topologically equivalent if every sequence in \mathcal{A} convergent in d_1 is also convergent in d_2 and every sequence in \mathcal{A} convergent in d_2 is also convergent in d_1 ;
- 2. uniformly equivalent on \mathcal{A} if the identity mappings $id_1:(\mathcal{A},d_1)\mapsto(\mathcal{A},d_2)$ and $id_2:(\mathcal{A},d_2)\mapsto(\mathcal{A},d_1)$ are uniformly continuous.

Let us recall some of published results on the equivalence of metrics. Florian [10] compared the Hausdorff metric d_H and the integral metric δ_1 . It was shown that these two metrics are topologically equivalent on the space $\mathcal{X} = \{A \subset \mathbb{R}^n : A \neq \emptyset \text{ is convex and compact}\}$. However, metrics d_H and δ_1 are not uniformly equivalent on \mathcal{X} , because there are sequences $\{K_j\}$ and $\{H_j\}$ of elements of \mathcal{X} such that $\delta_1(K_j, H_j) \to 0$ as $j \to +\infty$, but $d_H(K_j, H_j) \to 0$.

Vitale [26] compared the Hausdorff metric d_H and the integral metric δ_p . These metrics are not uniformly equivalent on the space \mathcal{X} , but they are uniformly equivalent on a subspace \mathcal{Y} of \mathcal{X} , i.e.

$$\exists (C > 0; \ \alpha \in (0,1)) \ \forall (A_1, A_2 \in \mathcal{Y} \subset \mathcal{X}) :$$

$$d_H(A_1, A_2) \le C \cdot (\delta_p(A_1, A_2))^{\alpha} \quad \text{and} \quad \delta_p(A_1, A_2) \le C \cdot d_H(A_1, A_2). \tag{2}$$

In comparison to these results, in [8,14,20,25] other pairs of metrics were studied and similar results were established. For instance, in [20] the Hausdorff metric d_H and the Demyanov metric d_D were compared:

$$\exists C > 0 \ \forall K_1, K_2 \in \mathcal{Y}' \subset \mathcal{X} : \quad d_D(K_1, K_2) \le C \cdot \left(d_H(K_1, K_2)\right)^{1/2}. \tag{3}$$

Download English Version:

https://daneshyari.com/en/article/4615651

Download Persian Version:

https://daneshyari.com/article/4615651

<u>Daneshyari.com</u>