

Existence of periodic solutions of a particular type of super-quadratic Hamiltonian systems **

Xiaofei Zhang, Fei Guo*
Department of Mathematics, School of Science, Tianjin University, Tianjin 300072, P.R. China

A R T I C L E I N F O

Article history:

Received 13 May 2014
Available online 12 August 2014
Submitted by J. Shi

Keywords:

Hamiltonian systems
Super-quadratic condition
Existence of periodic solutions

Abstract

This paper considers the Hamiltonian systems with new super-quadratic conditions covering the case $\hat{H}(t, z)=\left(|p|^{1+\frac{\mu}{\nu}}+|q|^{1+\frac{\nu}{\mu}}\right)\left(\ln \left(1+|z|^{\hat{\xi}}\right)\right)^{\hat{\eta}}$, where $\hat{\xi}, \hat{\eta}, \mu, \nu>1$ with $\frac{1}{\mu}+\frac{1}{\nu}<1$ and $\frac{\mu}{2 \nu}<\frac{\nu}{\mu}<\frac{\mu}{\nu}<1+\frac{\nu}{\mu}$. Using the mini-max principle, we obtain the existence of the periodic solutions.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let $z=(p, q), p, q \in \mathbf{R}^{n}$ and $H \in C^{1}\left(\mathbf{R} \times \mathbf{R}^{2 n}, \mathbf{R}\right)$, then we consider the Hamiltonian system

$$
\left\{\begin{array}{l}
\dot{p}=-H_{q}^{\prime}(t, z) \tag{1.1}\\
\dot{q}=H_{p}^{\prime}(t, z)
\end{array}\right.
$$

which also can be written as $\dot{z}=J H_{z}^{\prime}(t, z)$, where $H_{z}^{\prime}=\frac{\partial H}{\partial z}=\left(H_{p}^{\prime}, H_{q}^{\prime}\right)=\left(\frac{\partial H}{\partial p}, \frac{\partial H}{\partial q}\right)$ and $J=\left(\begin{array}{cc}0 & -I_{n} \\ I_{n} & 0\end{array}\right)$ with I_{n} being the $n \times n$ identity matrix.

In the pioneer work [5], the author established the existence of periodic solutions of the autonomous Hamiltonian systems under a classical super-quadratic condition, that is,
$\left(\mathrm{S}_{1}\right)$ there exist constants $\hat{\theta} \in\left(0, \frac{1}{2}\right)$ and $R>0$ such that

$$
\hat{\theta} H_{z}^{\prime}(t, z) \cdot z \geq H(t, z)>0, \quad(t, z) \in \mathbf{R} \times \mathbf{R}^{2 n} \text { with }|z| \geq R
$$

[^0]http://dx.doi.org/10.1016/j.jmaa.2014.08.006
0022-247X/© 2014 Elsevier Inc. All rights reserved.

After paper [5], much work has been done in this field. Paper [1] develops a mini-max principle which improves the verification of the existence of periodic solutions in paper [5]. Paper [2] considers periodic and subharmonic solutions of the super-quadratic non-autonomous Hamiltonian systems. Paper [3] considers the existence of periodic solutions of a certain kind of the Hamiltonian systems with the super-quadratic condition (S_{2}) generalizing $\left(\mathrm{S}_{1}\right)$, that is, $\left(\mathrm{S}_{2}\right)$ there exist constants $c_{1}, c_{2}, R>0$ and $\hat{\beta}>1$ such that

$$
\begin{gathered}
H_{z}^{\prime}(t, z) \cdot z-2 H(t, z) \geq c_{1}|z|^{\hat{\beta}}, \quad(t, z) \in \mathbf{R} \times \mathbf{R}^{2 n} \text { with }|z| \geq R, \\
\frac{H(t, z)}{|z|^{2}} \rightarrow+\infty \quad \text { as }|z| \rightarrow+\infty \text { uniformly in } t
\end{gathered}
$$

where "." denotes the inner product in $\mathbf{R}^{2 n}$ and " $|\cdot|$ " denotes the induced norm.
Paper [4] considers the existence of periodic solutions of the Hamiltonian systems with the super-quadratic condition (S_{3}) generalizing $\left(\mathrm{S}_{1}\right)$, that is,
$\left(\mathrm{S}_{3}\right)$ there exist constants $\hat{\sigma}, \hat{\tau}>1$ with $\frac{1}{\hat{\sigma}}+\frac{1}{\hat{\tau}}<1$ and $R>0$ such that

$$
\frac{1}{\hat{\sigma}} H_{p}^{\prime}(t, z) \cdot p+\frac{1}{\hat{\tau}} H_{q}^{\prime}(t, z) \cdot q \geq H(t, z)>0, \quad(t, z) \in \mathbf{R} \times \mathbf{R}^{2 n} \text { with }|z| \geq R
$$

Paper [4] also shows that (S_{3}) implies that there exist constants $c_{1}>0$ and $c_{2}>0$ such that

$$
\begin{equation*}
H(t, z) \geq c_{1}\left(|p|^{\hat{\sigma}}+|q|^{\hat{\tau}}\right)-c_{2}, \quad(t, z) \in \mathbf{R} \times \mathbf{R}^{2 n} \tag{1.2}
\end{equation*}
$$

References [7] and [6] are good readings for the beginners to acquire the knowledge in this field.
Our aim is using the mini-max method to find out a nontrivial periodic solution of the system (1.1) with a new super-quadratic condition generalizing $\left(\mathrm{S}_{2}\right)$ and $\left(\mathrm{S}_{3}\right)$. Claim 1.7 implies that there exist particular cases that satisfy the super-quadratic condition in this paper, but dissatisfy $\left(\mathrm{S}_{2}\right)$ and $\left(\mathrm{S}_{3}\right)$.

Our results are listed as follows.
Theorem 1.1. The system (1.1) possesses a nontrivial T-periodic solution, if H satisfies
(H1) $H \in C^{1}\left(\mathbf{R} \times \mathbf{R}^{2 n}, \mathbf{R}\right)$ is nonnegative and T-periodic with respect to t,
(H2) there exist constants $c_{1}, c_{2}>0$ and $\beta, \mu, \nu>1$ with $\frac{1}{\mu}+\frac{1}{\nu}<1$ such that

$$
\frac{1}{\mu} H_{p}^{\prime}(t, z) \cdot p+\frac{1}{\nu} H_{q}^{\prime}(t, z) \cdot q-\left(\frac{1}{\mu}+\frac{1}{\nu}\right) H(t, z) \geq c_{1}|z|^{\beta}-c_{2}, \quad(t, z) \in \mathbf{R} \times \mathbf{R}^{2 n}
$$

(H3) there exist constants $\sigma, \tau>0$ and $\lambda \in\left(\max \left\{\frac{\sigma}{\tau}, \frac{\tau}{\sigma}\right\}, 1+\frac{\beta-1}{\beta}\right)$ such that

$$
\left|H_{z}^{\prime}(t, z)\right| \leq c_{2}\left(|z|^{\lambda}+1\right), \quad(t, z) \in \mathbf{R} \times \mathbf{R}^{2 n}
$$

where c_{2} and β are as above,
(H4) $\frac{H(t, z)}{|p|^{1+\frac{\sigma}{\tau}}+|q|^{1+\frac{\tau}{\sigma}}} \rightarrow 0$ as $|z| \rightarrow 0$ uniformly in t, where σ and τ are as above,
(H5) $\frac{H(t, z)}{|p|^{1+\frac{\sigma}{\tau}}+|q|^{1+\frac{\tau}{\sigma}}} \rightarrow+\infty$ as $|z| \rightarrow+\infty$ uniformly in t, where σ and τ are as above.
Note that (H2) and (H5) are the super-quadratic conditions that generalize (S_{2}) and (S_{3}) (see Claim 1.2). And there exists an example showing that it satisfies (H1)-(H5), but dissatisfies (S_{2}) and (S_{3}) (see Claim 1.7). So Theorem 1.1 generalizes Theorem 1.1 in paper [3].

https://daneshyari.com/en/article/4615671

Download Persian Version:

https://daneshyari.com/article/4615671

Daneshyari.com

[^0]: 放 Supported by National Natural Science Foundation of China (10901118) and Elite Scholar Program in Tianjin University, P.R. China.

 * Corresponding author.

 E-mail address: guofei79@tju.edu.cn (F. Guo).

