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This paper presents an efficient numerical method for approximating highly oscilla-
tory Bessel transforms. Based on analytic continuation, we transform the integrals 
into the problems of integrating the forms on [0, +∞) with the integrand that does
not oscillate and decays exponentially fast, which can be efficiently computed by 
using Gauss–Laguerre quadrature rule. We then derive the error of the method de-
pending on the frequency and the node number. Moreover, we apply the scheme 
for studying the approximations of the solutions of two kinds of highly oscillatory 
integral equations. Preliminary numerical results show the efficiency and accuracy 
of numerical approximations.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The problem of evaluating the highly oscillatory Bessel transforms

I[f ] =
a∫

0

f(x)Jv(ωx)dx, ω � 1 (1.1)

occurs in many areas of science and technology, for example, in astronomy, optics, electro-magnetics, seis-
mology image processing and applied mathematics (see [3,4,10,19,31,32]). Here, f(x) is a smooth real-valued 
function, v is an arbitrary nonnegative integer and Jv(ωx) is the Bessel function of the first kind and of 
order v. In most of the cases, the integrals cannot be done analytically and one has to rely on numerical 
methods. However, for large ω, the integrands become highly oscillatory and present serious difficulties in 
obtaining numerical convergence of the integrations. For example, classical quadrature rules of the Newton–
Cotes type or Gaussian type are based on polynomial interpolation. It is well known that polynomials are 
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not suited for the approximation of oscillatory functions, and the integration error of these quadrature rules 
increases rapidly with increasing ω.

The theoretical and numerical aspects of the integrals have received considerable attention in the last 
few years and many efficient methods have been developed. Modified Clenshaw–Curtis methods [29] are 
applicable to the integral 

∫ 1
0 f(x)Jv(ωx)dx for non-negative order v, which is presented by replacing the 

smooth factor of the integrand by a truncated Chebyshev series approximation. Levin-type methods (see [22,
23,28,38,41]) are developed for evaluating 

∫ b

a
f(x)Jv(ωx)dx under the assumption that the weight functions 

satisfies certain differential conditions for 0 /∈ [a, b]. Based on Lagrange’s identity

zLS − SMz =
(
Z
(
S(ω, x), z(x)

))′
x

(1.2)

by choosing the differential operator L to satisfy LS = 0 for the weight function S(ω, x), where M is 
the adjoint operator of L, generalized quadrature rules are presented under the condition that 0 /∈ [a, b]. 
This method is efficient for more general irregular oscillatory weight functions S(ω, x). But a disadvantage 
is that the approach only works for 0 /∈ [a, b] [9,13,40]. Based on He [16,17] and Watson’s work [35,36], 
Chen and Liang proposed a homotopy perturbation method to consider the asymptotic expression of the 
Bessel, Anger and Weber transformations [7,8]. All these methods share an advantageous property that the 
accuracy greatly improves when ω increases.

Complex integration method [27,37] and steepest descent method [18] for the form

1∫
−1

f(x)eiωxdx (1.3)

have been developed. If f is analytic in a sufficiently large complex region G that contains [−1, 1], the 
integrals can be transformed into the problems of integrating two integrals on [0, +∞), where the integrands 
are not oscillatory and decay exponentially fast [18,21,27].

In the present work, an entirely different method is presented to compute the integrals (1.1). We con-
sider the numerical computation of the integral following Wong [37], Milovanović [27] and Huybrechs and 
Vandewalle’s work [18].

The numerical solution of the integral equation of the first kind with a highly oscillatory Bessel kernel

x∫
0

J0
(
ω(x− t)

)
y(t)dt = f(x), x ∈ [0, T ], (1.4)

has attracted much attention during the last few years [6,10,30,33], where y(x) is the unknown function 
whose value is to be determined in the interval [0, T ], f(x) is a given sufficiently smooth function and ω is 
a large parameter.

One feature of the Volterra integral equation (1.4) is of particular note: when ω � 1, the kernel function 
J0(ω(x − t)) would become highly oscillatory. This means that some general numerical methods may not 
be immediately applicable to this equation. When f(x) ∈ C1[0, T ], the unique solution of Eq. (1.4) can be 
given by [30, Eq. 1.8.1] as

y(x) = 1
ω

(
d2

dx2 + ω2
)2 x∫

0

(x− t)J1
(
ω(x− t)

)
f(t)dt, x ∈ [0, T ]. (1.5)

At the same time, we will consider the numerical solution of the Fredholm integral equation with a highly 
oscillatory Bessel kernel
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