Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Logarithmic moving averages

N.H. Bingham^a, Bujar Gashi^{b,*}

^a Department of Mathematics, Imperial College London, 180 Queens Gate, London, SW7 2BZ, UK
 ^b Department of Mathematical Sciences, The University of Liverpool, Liverpool, L69 7ZL, UK

ARTICLE INFO

Article history: Received 20 May 2014 Available online 20 August 2014 Submitted by U. Stadtmueller

Keywords: Moving averages *l*-method *L*-method *P*-method LLN Regular variation

ABSTRACT

We introduce a moving average summability method, which is proved to be equivalent to the logarithmic ℓ -method. Several equivalence and Tauberian theorems are given. A strong law of large numbers is also proved.

© 2014 Published by Elsevier Inc.

1. Introduction

The logarithmic methods of summation ℓ and L are classical (see, for example, Hardy [35], Ishiguro [37–40], Kwee [46–48]). Let $\{s_n\}_{n=0}^{\infty}$ be a sequence of real numbers. The sequence is summable to s by the logarithmic ℓ -method, written $s_n \to s$ (ℓ), if

$$t_n := \frac{1}{\log n} \sum_{i=0}^n \frac{s_i}{i+1} \to s \quad (n \to \infty)$$

$$(1.1)$$

(we write ℓ_x when the limit is taken through a continuous variable).

The sequence is summable to s by the logarithmic L-method, written $s_n \to s$ (L), if

$$\frac{1}{-\log(1-x)} \sum_{i=0}^{\infty} \frac{s_i}{i+1} x^{i+1} \to s \quad (x \uparrow 1).$$
(1.2)

* Corresponding author.

E-mail addresses: N.Bingham@imperial.ac.uk (N.H. Bingham), Bujar.Gashi@liverpool.ac.uk (B. Gashi).

 $\label{eq:http://dx.doi.org/10.1016/j.jmaa.2014.08.031} 0022-247 X/ © 2014 \ Published by Elsevier Inc.$

Here we introduce a certain delayed (deferred) summability method. For $\lambda > 1$, the sequence $\{s_n\}_{n=0}^{\infty}$ is summable by the *logarithmic moving average*, $s_n \to s$ ($\mathcal{L}(\lambda)$), if

$$\frac{1}{\log n} \sum_{n^{1/\lambda} < i \le n} \frac{s_i}{i+1} \to (1-\lambda^{-1})s \quad (n \to \infty)$$
(1.3)

(we write $\mathcal{L}_x(\lambda)$ if the limit is taken through a continuous variable x).

2. Equivalence and Tauberian theorems

2.1. Results

Theorem 1. $\ell \Leftrightarrow \mathcal{L}(\lambda)$ for some (all) $\lambda > 1$.

With $\{a_n\}_{n=0}^{\infty}$ defined by $s_n = \sum_{k=0}^n a_n$, the Riesz (typical) mean $R(\log n)$ (of order 1) is defined as

$$\frac{1}{x} \int_{0}^{x} \left\{ \sum_{k: \log(k+1) < y} a_k \right\} dy \quad (x \to \infty).$$

In view of $R(\log n) \Leftrightarrow \ell$ (Hardy [35, Th. 37]; see also §5.16), this gives

Corollary 1. $R(\log n) \Leftrightarrow \mathcal{L}(\lambda)$ for some (all) $\lambda > 1$.

Note that $R(\log n)$ involves a *continuous* limit, but $\mathcal{L}(\lambda)$ a *discrete* one. This equivalence between discrete and continuous limits is a consequence of *uniformity*, as in Theorem 2 below.

Theorem 2. If (1.3) holds for all $\lambda > 1$, then it holds uniformly on compact λ -sets in $(1, \infty)$.

Corollary 2. $s_n \to s$ (ℓ_x) if and only if $s_n \to s$ $(\mathcal{L}_x(\lambda))$ for all $\lambda > 1$.

Theorem 3. Let $U(x) := \sum_{0 \le i \le x} s_i(i+1)^{-1}$. The following statements are equivalent:

(i) $U(x) = U_1(x) - U_2(x)$, with $U_2(x)$ non-decreasing and $U_1(x)$ satisfying

$$\lim_{x \to \infty} \left[U_1(x) - U_1(x^{1/\lambda}) \right] (\log x)^{-1} = s \left(1 - \lambda^{-1} \right), \quad \forall \lambda > 1,$$

(ii) $\liminf_{\alpha \downarrow 1} \limsup_{x \to \infty} \sup_{\theta \in [1,\alpha]} [U(x) - U(x^{1/\theta})] (\log x)^{-1} < \infty.$

Corollary 3. If $s_n \to s$ (ℓ), then statement (ii) of Theorem 3 holds.

The Abelian result that $\ell \Rightarrow L$ is proved in [38]. The simplest Tauberian condition for $L \Rightarrow \ell$, and thus $\ell \Leftrightarrow L$, is $s_n = O_L(1)$ as proved in [39]. We next give a Tauberian theorem establishing the equivalence between ℓ and L methods under a one-sided Tauberian condition of best possible character (cf. [16]).

Theorem 4. We have $\ell \Leftrightarrow L$ if and only if

$$\liminf_{\lambda \downarrow 1} \liminf_{n \to \infty} \min_{n \le m \le \lambda n} \frac{1}{\log n} \sum_{n < i < m} \frac{s_i}{i+1} \ge 0.$$
(2.1)

Download English Version:

https://daneshyari.com/en/article/4615682

Download Persian Version:

https://daneshyari.com/article/4615682

Daneshyari.com