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Let Ω be a bounded domain with a smooth C2 boundary in RN = R
k × R

N−k

(N ≥ 3), 0 ∈ ∂Ω, and ν denotes the unit outward normal vector to boundary ∂Ω. 
We are concerned with the Neumann boundary problem: −Δu − μ u

|y|2 = |u|pt−1u

|y|t +
f(x, u), u > 0, x ∈ Ω, ∂u

∂ν
+ α(x)u = 0, x ∈ ∂Ω \ {0}. Using the Mountain Pass 

Lemma without (PS) condition and the strong maximum principle, we establish 
certain existence result of the positive solutions.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction and main results

In this paper, we consider the following Hardy–Sobolev–Maz’ya problem with Neumann boundary

⎧⎪⎪⎨
⎪⎪⎩

−Δu− μ
u

|y|2 = |u|pt−1u

|y|t + f(x, u), u > 0, x ∈ Ω,

∂u

∂ν
+ α(x)u = 0, x ∈ ∂Ω \ {0},

(1.1)

where Ω ⊂ R
N is a bounded domain with C2 boundary, 0 ∈ ∂Ω, RN = R

k × R
N−k, 2 ≤ k < N , 0 ≤ μ <

μ̄ =: (k−2)2
4 when k > 2, μ = 0 when k = 2, 0 ≤ t < 2 and pt = N+2−2t

N−2 , moreover, 0 ≤ α(x) ∈ L∞(∂Ω), 
α(x) �≡ 0, and ν denotes the unit outward normal vector to boundary ∂Ω. The main interest of this kind 
of problem, in addition to the presence of the singular potential 1/|y|2 related to Hardy’s inequality, is the 
following well-known Hardy–Sobolev–Maz’ya inequality [8]

(∫
RN

|u|pt+1

|y|t dx

) 2
pt+1

≤
(
Sμ
t

)−1
∫
RN

(
|∇u|2 − μ

u2

|y|2
)
dx, ∀u ∈ C∞

0
(
R

N
)
, (1.2)
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where μ < μ̄. Especially, when t = 2, one has that if u ∈ H1
0 (Ω), then u/|y| ∈ L2(Ω) and

∫
Ω

u2

|y|2 dx ≤ 1
μ̄

∫
Ω

|∇u|2dx.

But, the constant μ̄ is optimal and is not achieved, due to the non-compactness in the embedding H1(Ω) ↪→
L2(Ω, |y|−2dx), even locally, in any neighborhood of zero.

From the mathematical point of view, the Hardy–Sobolev–Maz’ya terms u
|y|2 and |u|pt−1u

|y|t are critical: 
indeed they have the same homogeneity as the Laplacian and do not belong to the Kato’s class, hence 
they can cause the non-compactness of the corresponding functional. Various equations similar to (1.1)
have been proposed to model several phenomena of interest in astrophysics. We recall here the Eddingtons 
and Matukumas equations, which have attracted much interest in recent years (see [4,22–24]). In [7] vari-
ous astrophysical models are introduced and discussed, including some generalizations of the Matukumas 
equation.

Consider the functional associated to (1.1)

I(u) = 1
2

∫
Ω

(
|∇u|2 − λ

u2

|y|2
)
dx− 1

pt + 1

∫
Ω

(u+)pt+1

|y|t dx−
∫
Ω

F
(
x, u+)dx + 1

2

∫
∂Ω

α(x)u2dσ, (1.3)

where u+ = max{u, 0}, F (x, s) =
∫ s

0 f(x, t)dt. Obviously, the functional I is well defined and is C1 smooth 
in H1(Ω), and hence by the strong maximum principle, its critical point is a weak solution of (1.1). In what 
follows, we will employ the minimax methods to find the nontrivial critical points of I. The main difficulty 
is that, owing to the non-compactness in the embedding H1(Ω) ↪→ Lpt+1(Ω, |y|−tdx), I does not satisfy the 
Palais–Smale compactness condition for large level, which makes the study of (1.1) very tough.

After the pioneer work of Brezis and Nirenberg [10], a large number of papers appeared concerning 
the Dirichlet problem with critical exponents when k = N (see [5,6,9,11–14,17,19,20]). The corresponding 
problem with Neumann boundary condition have also been extensively studied in recent years (see for 
example, [1–3,16,21,25,29,30]). As for the Sobolev–Hardy problem, since the singularity at 0, this kind of 
problem attracts much attention. However, there are few interesting results for this kind of problem with 
k �= N . The main purpose of this paper is to establish new existence phenomena for problem (1.1) under 
the case t = 2 − N−2

N−k+
√

(k−2)2−4μ .
For k = N , the existence of the least energy solutions of (1.1) has been proved in [15] if μ < (N−2

2 )2

and 0 < t < 2 for N ≥ 3 with Dirichlet boundary condition and f(x, u) = 0; Han and Liu in [18] showed 
the existence of positive solutions of (1.1) when t = 0 for the Neumann boundary condition with 0 ∈ ∂Ω; 
Shang and Tang in [27] proved that (1.1) has a positive solution if 0 < μ < (N−2

2 )2 and 0 ≤ t < 2 for 
N ≥ 4. If 2 < k < N , Bhakta and Sandeep in [8] investigated the existence (non-existence) of the solutions 
to (1.1) with Dirichlet boundary condition; replacing f(x, u) by λu, the authors in [28] obtained infinitely 
many solutions for (1.1) when N > 6 + t. In this sequel, using the variational method and taking some idea 
from [18,27], we prove that (1.1) possesses a positive solution for a large class of f(x, s).

In order to state our main result, we give the conditions imposed on f ∈ C(Ω̄ × R
+, R): there exists a 

function a(x) ∈ L∞(Ω), a(x) ≤ 0 such that

(f1) lims→0+
f(x,s)

s = a(x), uniformly for x ∈ Ω̄;
(f2) lims→+∞

f(x,s)
spt = 0, uniformly for x ∈ Ω̄.
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