
J. Math. Anal. Appl. 418 (2014) 713–733

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Finite time blow-up and global solutions for fourth order damped
wave equations

Yongda Wang
Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 October 2013
Available online 12 April 2014
Submitted by P. Yao

Keywords:
Fourth order wave equation
Initial-boundary value problem
Damping term
Strong source term

This work is devoted to a class of fourth order wave equations with linear damping
term and superlinear source term. After showing the uniqueness and existence of
local solutions to the equations, we give necessary and sufficient conditions for global
existence and finite time blow-up of these solutions. Moreover, the potential well
depth is estimated.
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1. Introduction

The report [1] about the Tacoma Narrows Bridge collapse [25,26] considers . . . the crucial event in the
collapse to be the sudden change from a vertical to a torsional mode of oscillation, see also [25, p. 63].
Hence, if one models a suspension bridge by a beam, there is no way to highlight the torsional oscillations.
The nonlinear behavior of suspension bridges, which is by now well established, see [2,8,13,23], also plays
a crucial role in causing oscillations. Therefore, a reliable model for suspension bridges should be nonlinear
and it should have enough degrees of freedom to display torsional oscillations. In this respect, Lazer and
McKenna [14, Problem 11] suggested to study the following equation

Δ2u + c2Δu + h(u) = 0, in R
n, (1.1)

where h(u) ≈ [u + 1]+ − 1 with u+ = max{u, 0}. Subsequently, equations “like” (1.1), namely,

Δ2u + c2Δu = b
[
(u + 1)+ − 1

]
, in Σ ⊂ R

n, (1.2)

under the Navier boundary condition have been considered in several papers. For the case c2 < λ1
((λk)k≥1, the sequence of eigenvalues of −Δ in H1

0 (Σ)), we refer to [15,18,27]. Tarantello [27] proved that if
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b ≥ λ1(λ1 − c2), then (1.2) has a nontrivial solution. Lazer and McKenna [15] discussed the case n = 1 when
Σ is an interval and found that (1.2) has at least 2k − 1 nontrivial solutions if b > λk(λk − c2). Micheletti
and Pistoia [18] studied (1.2) for a more general nonlinearity which is “like” b[(u + 1)+ − 1] and obtained
the multiplicity existence of nontrivial solutions. When c2 ≥ λ1, Micheletti and Pistoia considered (1.2)
when b[(u + 1)+ − 1] is replaced by a more general nonlinearity in [17], where they showed the existence
of a nontrivial solution. Then Micheletti, Pistoia and Saccon [19] improved the result in [17] and gave the
multiplicity results for the same problem.

In other papers [32–34] this kind of problem was also investigated under the Navier boundary condition.
More recently, Ferrero and Gazzola [5] suggested one should consider the boundaries of a plate Ω = (0, π)×
(−l, l) which represents the roadway of a suspension bridge as follows. Because the edges x = 0, π connect
with the ground, they are assumed to be hinged and then

u(0, y) = uxx(0, y) = u(π, y) = uxx(π, y) = 0, y ∈ (−l, l), (1.3)

while the edges y = ±l are free and the boundary conditions there become (see [30, 2.40])

uyy(x,±l) + σuxx(x,±l) = 0, uyyy(x,±l) + (2 − σ)uxxy(x,±l) = 0, x ∈ (0, π). (1.4)

The free boundaries (1.4) yield small stretching energy for the plate, so Ferrero and Gazzola took c = 0 in
(1.1) and introduced a model for the stationary suspension bridge

Δ2u + h(x, y, u) = f(x, y), in Ω (1.5)

as well as a model for the nonlinear dynamical suspension bridge

utt + Δ2u + μut + h(x, y, u) = f(x, y, t), in Ω × (0, T ), (1.6)

here h(x, y, u) is restoring force due to the hangers of the suspension bridge, f(x, y) or f(x, y, t) is the
external force including the gravity.

Given an open rectangular plate Ω = (0, π)×(−l, l) ⊂ R
2, we consider the following initial value problem

⎧⎨
⎩

utt + Δ2u + μut + au = |u|p−2u, (x, y, t) ∈ Ω × [0, T ],
u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,

ut(x, y, 0) = u1(x, y), (x, y) ∈ Ω,

(1.7)

with the boundary condition

{
u(0, y, t) = uxx(0, y, t) = u(π, y, t) = uxx(π, y, t) = 0, y ∈ (−l, l),
uyy(x,±l, t) + σuxx(x,±l, t) = uyyy(x,±l, t) + (2 − σ)uxxy(x,±l, t) = 0, x ∈ (0, π),

(1.8)

for every t ∈ [0, T ], where T > 0, μ > 0, 2 < p < ∞, σ ∈ (0, 1
2 ) and a = a(x, y, t) is a sign-changing and

bounded measurable function. The initial data u0, u1 belong to suitable spaces, which will be specified later
on.

Here we study the fourth order wave problem (1.7) with the boundary condition (1.8), because it comes
from the physical model for the dynamic suspension bridge if we assume that au describes the restoring
force because of the hangers of the suspension bridge and |u|p−2u is the strong source term which rep-
resents the other external forces acting on the bridge. We explain this model briefly below, see for more
details [5].
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