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1. Introduction and results
Let s € (0,1) and 2 be a bounded smooth domain in R™, and consider the problem

(=A)°u = Xe* in 2

(1.1)
u=0 in R™\{2.

S

Here, A is a positive parameter and (—A)? is the fractional Laplacian, defined by

(—A)u(z) = chVR[ %dg]. (1.2)

The aim of this paper is to study the regularity of the so-called extremal solution of the problem (1.1).

For the Laplacian —A (which corresponds to s = 1) this problem is frequently called the Gelfand problem
[16], and the existence and regularity properties of its solutions are by now quite well understood [19,17,21,
20,9]; see also [15,22].

E-mail address: xavier.ros.oton@upc.edu.
1 The author was supported by grants MINECO MTM2011-27739-C04-01 and GENCAT 2009SGR-345.

http://dx.doi.org/10.1016/j.jmaa.2014.04.048
0022-247X/© 2014 Elsevier Inc. All rights reserved.


http://dx.doi.org/10.1016/j.jmaa.2014.04.048
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:xavier.ros.oton@upc.edu
http://dx.doi.org/10.1016/j.jmaa.2014.04.048
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2014.04.048&domain=pdf

X. Ros-Oton / J. Math. Anal. Appl. 419 (2014) 10-19 11

Indeed, when s = 1 one can show that there exists a finite extremal parameter \* such that if 0 < A < A\*
then it admits a minimal classical solution uy, while for A > A* it has no weak solution. Moreover, the
pointwise limit u* = limyqx- uy is a weak solution of problem with A = A*. It is called the extremal solution.
All the solutions u) and u* are stable solutions.

On the other hand, the existence of other solutions for A < A\* is a more delicate question, which depends
strongly on the regularity of the extremal solution v*. More precisely, it depends on the boundedness of u*.

It turns out that the extremal solution u* is bounded in dimensions n < 9 for any domain {2 [20,9], while
u*(z) = log ﬁ is the (singular) extremal solution in the unit ball when n > 10. This result strongly relies
on the stability of v*. In the case {2 = Bj, the classification of all radial solutions to this problem was done
in [19] for n = 2, and in [17,21] for n > 3.

For more general nonlinearities f(u) the regularity of extremal solutions is only well understood when
2 = Bj. As in the exponential case, all extremal solutions are bounded in dimensions n < 9, and may be
singular if n > 10 [6]. For general domains {2 the problem is still not completely understood, and the best
result in that direction states that all extremal solutions are bounded in dimensions n < 4 [5,25]. In domains
of double revolution, all extremal solutions are bounded in dimensions n < 7 [7]. For more information on
this problem, see [3] and the monograph [14].

For the fractional Laplacian, the problem was studied by J. Serra and the author [24] for general nonlin-
earities f. We showed that there exists a parameter A* such that for 0 < A < A* there is a branch of minimal
solutions uy, for A > A\* there is no bounded solutions, and for A = A\* one has the extremal solution u*,
which is a stable solution. Moreover, depending on the nonlinearity f and on n and s, we obtained L*° and
H? estimates for the extremal solution in general domains (2. Note that, as in the case s = 1, once we know
that u* is bounded then it follows that it is a classical solution; see for example [23].

For the exponential nonlinearity f(u) = e*, our results in [24] yield the boundedness of the extremal
solution in dimensions n < 10s. Although this result is optimal as s — 1, it is not optimal, however, for
smaller values of s € (0,1). More precisely, an argument in [24] suggested the possibility that the extremal
solution u* could be bounded in all dimensions n < 7 and for all s € (0, 1). However, our results in [24] did
not give any L estimate uniform in s.

The aim of this paper is to obtain better L* estimates for the fractional Gelfand problem (1.1) when-
ever {2 is even and convex with respect to each coordinate axis. Our main result, stated next, establishes
the boundedness of the extremal solution u* whenever (1.3) holds and, in particular, whenever n < 7
independently of s € (0,1). As explained in Remark 2.2, we expect this result to be optimal.

Theorem 1.1. Let {2 be a bounded smooth domain in R™ which is, for every ¢ = 1,...,n, convex in the
x;-direction and symmetric with respect to {x; = 0}. Let s € (0,1), and let u* be the extremal solution of
problem (1.1). Assume that either n < 2s, or that n > 2s and
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(1.3)

425) .
Then, u* is bounded. In particular, the extremal solution u* is bounded for all s € (0,1) whenever n < 7.
The same holds if n =8 and s 2 0.28206..., or if n =9 and s = 0.63237....

The result is new even in the unit ball 2 = Bj.

We point out that, for n = 10 condition (1.3) is equivalent to s > 1.

Let us next comment on some works related to problem (1.1).

On the one hand, for the power nonlinearity f(u) = (14+u)?, p > 1, the problem has been recently studied
by Dévila, Dupaigne, and Wei [13]. Their powerful methods are based on a monotonicity formula and a
blow-up argument, using the ideas introduced in [12] to study the case of the bilaplacian, s = 2. For this
case s = 2, extremal solutions with exponential nonlinearity have been also studied; see for example [10].
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