Regularity for the fractional Gelfand problem up to dimension 7

Xavier Ros-Oton ${ }^{1}$
Universitat Politècnica de Catalunya, Departament de Matemàtica Aplicada I, Diagonal 647, 08028 Barcelona, Spain

A R T I C L E I N F O

Article history:

Received 20 January 2014
Available online 25 April 2014
Submitted by T. Witelski

Keywords:

Fractional Laplacian
Gelfand problem
Extremal solution

Abstract

We study the problem $(-\Delta)^{s} u=\lambda e^{u}$ in a bounded domain $\Omega \subset \mathbb{R}^{n}$, where λ is a positive parameter. More precisely, we study the regularity of the extremal solution to this problem. Our main result yields the boundedness of the extremal solution in dimensions $n \leq 7$ for all $s \in(0,1)$ whenever Ω is, for every $i=1, \ldots, n$, convex in the x_{i}-direction and symmetric with respect to $\left\{x_{i}=0\right\}$. The same holds if $n=8$ and $s \gtrsim 0.28206 \ldots$, or if $n=9$ and $s \gtrsim 0.63237 \ldots$. These results are new even in the unit ball $\Omega=B_{1}$.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction and results

Let $s \in(0,1)$ and Ω be a bounded smooth domain in \mathbb{R}^{n}, and consider the problem

$$
\begin{cases}(-\Delta)^{s} u=\lambda e^{u} & \text { in } \Omega \tag{1.1}\\ u=0 & \text { in } \mathbb{R}^{n} \backslash \Omega .\end{cases}
$$

Here, λ is a positive parameter and $(-\Delta)^{s}$ is the fractional Laplacian, defined by

$$
\begin{equation*}
(-\Delta)^{s} u(x)=c_{n, s} \operatorname{PV} \int_{\mathbb{R}^{n}} \frac{u(x)-u(y)}{|x-y|^{n+2 s}} d y \tag{1.2}
\end{equation*}
$$

The aim of this paper is to study the regularity of the so-called extremal solution of the problem (1.1).
For the Laplacian $-\Delta$ (which corresponds to $s=1$) this problem is frequently called the Gelfand problem [16], and the existence and regularity properties of its solutions are by now quite well understood $[19,17,21$, 20,9]; see also [15,22].

[^0]Indeed, when $s=1$ one can show that there exists a finite extremal parameter λ^{*} such that if $0<\lambda<\lambda^{*}$ then it admits a minimal classical solution u_{λ}, while for $\lambda>\lambda^{*}$ it has no weak solution. Moreover, the pointwise limit $u^{*}=\lim _{\lambda \uparrow \lambda^{*}} u_{\lambda}$ is a weak solution of problem with $\lambda=\lambda^{*}$. It is called the extremal solution. All the solutions u_{λ} and u^{*} are stable solutions.

On the other hand, the existence of other solutions for $\lambda<\lambda^{*}$ is a more delicate question, which depends strongly on the regularity of the extremal solution u^{*}. More precisely, it depends on the boundedness of u^{*}.

It turns out that the extremal solution u^{*} is bounded in dimensions $n \leq 9$ for any domain Ω [20,9], while $u^{*}(x)=\log \frac{1}{|x|^{2}}$ is the (singular) extremal solution in the unit ball when $n \geq 10$. This result strongly relies on the stability of u^{*}. In the case $\Omega=B_{1}$, the classification of all radial solutions to this problem was done in [19] for $n=2$, and in [17,21] for $n \geq 3$.

For more general nonlinearities $f(u)$ the regularity of extremal solutions is only well understood when $\Omega=B_{1}$. As in the exponential case, all extremal solutions are bounded in dimensions $n \leq 9$, and may be singular if $n \geq 10$ [6]. For general domains Ω the problem is still not completely understood, and the best result in that direction states that all extremal solutions are bounded in dimensions $n \leq 4$ [5,25$]$. In domains of double revolution, all extremal solutions are bounded in dimensions $n \leq 7$ [7]. For more information on this problem, see [3] and the monograph [14].

For the fractional Laplacian, the problem was studied by J. Serra and the author [24] for general nonlinearities f. We showed that there exists a parameter λ^{*} such that for $0<\lambda<\lambda^{*}$ there is a branch of minimal solutions u_{λ}, for $\lambda>\lambda^{*}$ there is no bounded solutions, and for $\lambda=\lambda^{*}$ one has the extremal solution u^{*}, which is a stable solution. Moreover, depending on the nonlinearity f and on n and s, we obtained L^{∞} and H^{s} estimates for the extremal solution in general domains Ω. Note that, as in the case $s=1$, once we know that u^{*} is bounded then it follows that it is a classical solution; see for example [23].

For the exponential nonlinearity $f(u)=e^{u}$, our results in [24] yield the boundedness of the extremal solution in dimensions $n<10 s$. Although this result is optimal as $s \rightarrow 1$, it is not optimal, however, for smaller values of $s \in(0,1)$. More precisely, an argument in [24] suggested the possibility that the extremal solution u^{*} could be bounded in all dimensions $n \leq 7$ and for all $s \in(0,1)$. However, our results in [24] did not give any L^{∞} estimate uniform in s.

The aim of this paper is to obtain better L^{∞} estimates for the fractional Gelfand problem (1.1) whenever Ω is even and convex with respect to each coordinate axis. Our main result, stated next, establishes the boundedness of the extremal solution u^{*} whenever (1.3) holds and, in particular, whenever $n \leq 7$ independently of $s \in(0,1)$. As explained in Remark 2.2, we expect this result to be optimal.

Theorem 1.1. Let Ω be a bounded smooth domain in \mathbb{R}^{n} which is, for every $i=1, \ldots, n$, convex in the x_{i}-direction and symmetric with respect to $\left\{x_{i}=0\right\}$. Let $s \in(0,1)$, and let u^{*} be the extremal solution of problem (1.1). Assume that either $n \leq 2 s$, or that $n>2 s$ and

$$
\begin{equation*}
\frac{\Gamma\left(\frac{n}{2}\right) \Gamma(1+s)}{\Gamma\left(\frac{n-2 s}{2}\right)}>\frac{\Gamma^{2}\left(\frac{n+2 s}{4}\right)}{\Gamma^{2}\left(\frac{n-2 s}{4}\right)} . \tag{1.3}
\end{equation*}
$$

Then, u^{*} is bounded. In particular, the extremal solution u^{*} is bounded for all $s \in(0,1)$ whenever $n \leq 7$. The same holds if $n=8$ and $s \gtrsim 0.28206 \ldots$, or if $n=9$ and $s \gtrsim 0.63237 \ldots$.

The result is new even in the unit ball $\Omega=B_{1}$.
We point out that, for $n=10$ condition (1.3) is equivalent to $s>1$.
Let us next comment on some works related to problem (1.1).
On the one hand, for the power nonlinearity $f(u)=(1+u)^{p}, p>1$, the problem has been recently studied by Dávila, Dupaigne, and Wei [13]. Their powerful methods are based on a monotonicity formula and a blow-up argument, using the ideas introduced in [12] to study the case of the bilaplacian, $s=2$. For this case $s=2$, extremal solutions with exponential nonlinearity have been also studied; see for example [10].

https://daneshyari.com/en/article/4615733

Download Persian Version:

https://daneshyari.com/article/4615733

Daneshyari.com

[^0]: E-mail address: xavier.ros.oton@upc.edu.
 1 The author was supported by grants MINECO MTM2011-27739-C04-01 and GENCAT 2009SGR-345.
 http://dx.doi.org/10.1016/j.jmaa.2014.04.048
 0022-247X/© 2014 Elsevier Inc. All rights reserved.

