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In this paper, some new convergent sequences and inequalities of Euler’s constant
are provided. To demonstrate the superiority of our new convergent sequence over
DeTemple’s sequence, Vernescu’s sequence and Mortici’s sequences, some numerical
computations are also given.
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1. Introduction

In the theory of mathematical constants, an important concern is the definition of new sequences which
converge to these fundamental constants with increasingly higher speed. These convergent sequences and
constants play a key role in many areas of mathematics and science in general, as theory of probability,
applied statistics, physics, special functions, number theory, or analysis.

One of the most useful convergent sequences in mathematics is

γn =
n∑

k=1

1
k
− lnn, (1.1)

which converges towards the well-known Euler’s constant

γ = 0.57721566490115328 . . . .

Up until now, many researchers made great efforts in the area of concerning the rate of convergence of
the sequence (γn)n�1 and establishing faster sequences to converge to Euler’s constant and had a lot of
inspiring results. For example, in [11–13,15], the following estimates are established

1
2n + 1 < γn − γ <

1
2n, (1.2)
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using interesting geometric interpretations. In [14], Vernescu provided the sequence

Vn = 1 + 1
2 + 1

3 + · · · + 1
n− 1 + 1

2n − lnn, (1.3)

for which

1
12(n + 1)2 < γ − Vn <

1
12n2 . (1.4)

In [1,2], DeTemple introduced a faster convergent sequence (Rn)n�1 to γ as follows,

Rn = 1 + 1
2 + 1

3 + · · · + 1
n
− ln

(
n + 1

2

)
, (1.5)

which decreases to γ with the rate of convergence n−2, since

1
24(n + 1)2 < Rn − γ <

1
24n2 . (1.6)

Both (1.3) and (1.5) are slight modifications of Euler’s sequences (1.1), but significantly improve the rate
of convergence from n−1 to n−2.

Recently, Mortici researched Euler’s constant again, and provided some convergent sequences which are
faster than (1.1), (1.3) and (1.5).

In [4], Mortici provided the following two sequences

un = 1 + 1
2 + 1

3 + · · · + 1
n− 1 + 1

(6 − 2
√

6)n
− ln

(
n + 1√

6

)
(1.7)

and

vn = 1 + 1
2 + 1

3 + · · · + 1
n− 1 + 1

(6 + 2
√

6)n
− ln

(
n− 1√

6

)
. (1.8)

Both sequences (1.7) and (1.8) were shown to converge to γ as n−3.
Next, in [6], Mortici introduced the following class of sequences of the form

μn(a, b) =
n∑

k=1

1
k

+ ln
(
ea/(n+b) − 1

)
− ln a, (1.9)

where a, b are real parameters, a > 0. Furthermore, they proved that among the sequences (μn(a, b))n�1,
the privileged one

μn

(√
2

2 ,
2 +

√
2

4

)

offers the best approximations of γ, since

lim
n→∞

n3
(
μn

(√
2

2 ,
2 +

√
2

4

)
− γ

)
=

√
2

96 . (1.10)
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