Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Some isoperimetric inequalities and eigenvalue estimates in weighted manifolds

M. Batista ^{a,1}, M.P. Cavalcante ^{a,*,2}, J. Pyo ^{b,3}

^a Instituto de Matemática, Universidade Federal de Alagoas, Maceió, AL, CEP 57072-970, Brazil
 ^b Department of Mathematics, Pusan National University, Busan 609-735, Republic of Korea

ARTICLE INFO

Article history: Received 12 November 2013 Available online 9 May 2014 Submitted by H.R. Parks

Keywords: Isoperimetric inequality Eigenvalue estimates Weighted manifolds

ABSTRACT

In this paper we prove general inequalities involving the weighted mean curvature of compact submanifolds immersed in weighted manifolds. As a consequence we obtain a relative linear isoperimetric inequality for such submanifolds. We also prove an extrinsic upper bound to the first non-zero eigenvalue of the drift Laplacian on closed submanifolds of weighted manifolds.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let $(\bar{M}^d, \bar{g}, d\bar{\mu})$ be a weighted manifold, that is, a Riemannian manifold (\bar{M}^d, \bar{g}) endowed with a weighted volume form $d\bar{\mu} = e^{-f} d\bar{M}$, where f is a real-valued smooth function on \bar{M} and $d\bar{M}$ is the volume element induced by the metric \bar{g} .

In weighted manifolds a natural generalization of the Ricci tensor is the *m*-Bakry–Émery tensor defined by

$$\overline{Ric}_{f}^{m} = \overline{Ric} + \overline{
abla}^{2}f - rac{1}{m-d}\,df \otimes df,$$

for each $m \in [d, \infty)$. When $m = \infty$ it gives the tensor $Ric_f = Ric + \overline{\nabla}^2 f$ introduced by Lichnerowicz [9,10] and independently by Bakry and Émery in [1]. The case m = d only makes sense when the function f is constant and so \overline{Ric}_f^m is the usual Ricci tensor \overline{Ric} of \overline{M} .

In this paper we are interested in studying inequalities on submanifolds of weighted manifolds. In order to do it we make use of intrinsic objects, like the m-Bakry–Émery tensor, and extrinsic objects like the weighted

http://dx.doi.org/10.1016/j.jmaa.2014.04.074 0022-247X/© 2014 Elsevier Inc. All rights reserved.

CrossMark

^{*} Corresponding author.

E-mail addresses: mhbs@mat.ufal.br (M. Batista), marcos@pos.mat.ufal.br (M.P. Cavalcante), jcpyo@pusan.ac.kr (J. Pyo). ¹ The first author was supported by FAPEAL/Brazil grant 20110901-011-0025-0044.

 ² The second author was supported by FAFEAL/Brazil grant 20110901-011-0025-0044.

³ The last author was supported by NRF-2010-0022951/Republic of Korea.

mean curvature defined below. Namely, given $x: M \to \overline{M}$ an isometric immersion, we define the weighted mean curvature vector \mathbf{H}_f by

$$\mathbf{H}_f = \mathbf{H} + \bar{\nabla} f^{\perp},$$

where **H** is the mean curvature vector of the submanifold M and $^{\perp}$ denotes the orthogonal projection onto the normal bundle TM^{\perp} (see Gromov [5] and Morgan [12]). The weighted mean curvature appears naturally in the first variation of the weighted area functional as described in [2]. In the submanifold M we also consider the weighted volume given $d\mu = e^{-f} dM$, where dM is the volume element of M.

In case that $\overline{M} = \Omega^{n+1}$, where Ω is a compact oriented (n+1)-dimensional Riemannian manifold with smooth boundary $M^n = \partial \Omega$ we consider on M the Riemannian metric induced by the inclusion map $\iota: M \hookrightarrow \Omega$.

Let ν be a unit normal vector field on M and let A denote the shape operator of M, that is $A = -\nabla_{(.)}\nu$. It is easy to see that $\mathbf{H}_f = H_f \nu$, where $H_f = H + \langle \bar{\nabla} f, \nu \rangle$ and H = trace A is the mean curvature function.

In [15], Ros proved an inequality relating the volume of Ω and the mean curvature function H of M. The inequality obtained by Ros is essentially contained in the paper of Heintze and Karcher [7], although the proof uses different techniques.

Our first result is the natural generalization of Ros inequality in the context of weighted manifolds.

Theorem 1.1. Let Ω^{n+1} be a compact weighted manifold with smooth boundary M and non-negative m-Bakry-Émery tensor. Let H_f be the weighted mean curvature of M. If H_f is positive everywhere, then

$$Vol_f(\Omega) \leqslant \frac{m-1}{m} \int\limits_M \frac{1}{H_f} d\mu.$$

Moreover, equality holds if and only if Ω is isometric to a Euclidean ball, f is constant and m = n + 1.

Extending the Ros formula, Choe and Park [4] proved that a compact connected embedded CMC hypersurface in a convex Euclidean solid cone which is perpendicular to the boundary of the cone is part of a round sphere.

The rigidity of compact submanifold with free boundary is a very classical problem in submanifold theory. For instance, Nitsche [13] proved that an immersed disk type constant mean curvature surface in a ball which makes a constant angle with the boundary of the ball is part of a round sphere.

On weighted manifolds, Cañete and Rosales [3] showed the rigidity of compact *stable* hypersurfaces with free boundary in a convex solid cone in Euclidean space with homogeneous density. Our next result extends Choe and Park's result to weighted Euclidean spaces $(\mathbb{R}^{n+1}, ds_0, d\bar{\mu})$, where ds_0 is the Euclidean metric.

Theorem 1.2. Let C be a convex solid cone with piecewise smooth boundary ∂C in a weighted manifold $(\mathbb{R}^{n+1}, ds_0, d\bar{\mu})$ of non-negative m-Bakry-Émery tensor. Let M be a compact connected embedded hypersurface in C and Ω the bounded domain enclosed by M and ∂C . If the weighted mean curvature H_f of M is positive everywhere, then

$$Vol_f(\Omega) \leqslant \frac{m-1}{m} \int\limits_M \frac{1}{H_f} d\mu.$$

Moreover, the equality holds if and only if M is part of a round sphere centered at the vertex of C and f is constant and m = n + 1.

Download English Version:

https://daneshyari.com/en/article/4615772

Download Persian Version:

https://daneshyari.com/article/4615772

Daneshyari.com