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In this paper we prove general inequalities involving the weighted mean curvature of
compact submanifolds immersed in weighted manifolds. As a consequence we obtain
a relative linear isoperimetric inequality for such submanifolds. We also prove an
extrinsic upper bound to the first non-zero eigenvalue of the drift Laplacian on
closed submanifolds of weighted manifolds.
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1. Introduction

Let (M̄d, ḡ, dμ̄) be a weighted manifold, that is, a Riemannian manifold (M̄d, ḡ) endowed with a weighted
volume form dμ̄ = e−f dM̄ , where f is a real-valued smooth function on M̄ and dM̄ is the volume element
induced by the metric ḡ.

In weighted manifolds a natural generalization of the Ricci tensor is the m-Bakry–Émery tensor defined by

Ricmf = Ric + ∇̄2f − 1
m− d

df ⊗ df,

for each m ∈ [d,∞). When m = ∞ it gives the tensor Ricf = Ric + ∇̄2f introduced by Lichnerowicz [9,10]
and independently by Bakry and Émery in [1]. The case m = d only makes sense when the function f is
constant and so Ricmf is the usual Ricci tensor Ric of M̄ .

In this paper we are interested in studying inequalities on submanifolds of weighted manifolds. In order to
do it we make use of intrinsic objects, like the m-Bakry–Émery tensor, and extrinsic objets like the weighted

* Corresponding author.
E-mail addresses: mhbs@mat.ufal.br (M. Batista), marcos@pos.mat.ufal.br (M.P. Cavalcante), jcpyo@pusan.ac.kr (J. Pyo).

1 The first author was supported by FAPEAL/Brazil grant 20110901-011-0025-0044.
2 The second author was supported by CNPq/Brazil grants 306131/2012-9 and 475660/2013-7.
3 The last author was supported by NRF-2010-0022951/Republic of Korea.

http://dx.doi.org/10.1016/j.jmaa.2014.04.074
0022-247X/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmaa.2014.04.074
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:mhbs@mat.ufal.br
mailto:marcos@pos.mat.ufal.br
mailto:jcpyo@pusan.ac.kr
http://dx.doi.org/10.1016/j.jmaa.2014.04.074
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2014.04.074&domain=pdf


618 M. Batista et al. / J. Math. Anal. Appl. 419 (2014) 617–626

mean curvature defined below. Namely, given x : M → M̄ an isometric immersion, we define the weighted
mean curvature vector Hf by

Hf = H + ∇̄f⊥,

where H is the mean curvature vector of the submanifold M and ⊥ denotes the orthogonal projection
onto the normal bundle TM⊥ (see Gromov [5] and Morgan [12]). The weighted mean curvature appears
naturally in the first variation of the weighted area functional as described in [2]. In the submanifold M we
also consider the weighted volume given dμ = e−f dM , where dM is the volume element of M .

In case that M̄ = Ωn+1, where Ω is a compact oriented (n + 1)-dimensional Riemannian manifold with
smooth boundary Mn = ∂Ω we consider on M the Riemannian metric induced by the inclusion map
ι : M ↪→ Ω.

Let ν be a unit normal vector field on M and let A denote the shape operator of M , that is A = −∇(.)ν.
It is easy to see that Hf = Hfν, where Hf = H + 〈∇̄f, ν〉 and H = traceA is the mean curvature function.

In [15], Ros proved an inequality relating the volume of Ω and the mean curvature function H of M .
The inequality obtained by Ros is essentially contained in the paper of Heintze and Karcher [7], although
the proof uses different techniques.

Our first result is the natural generalization of Ros inequality in the context of weighted manifolds.

Theorem 1.1. Let Ωn+1 be a compact weighted manifold with smooth boundary M and non-negative
m-Bakry–Émery tensor. Let Hf be the weighted mean curvature of M . If Hf is positive everywhere, then

Volf (Ω) � m− 1
m

∫
M

1
Hf

dμ.

Moreover, equality holds if and only if Ω is isometric to a Euclidean ball, f is constant and m = n + 1.

Extending the Ros formula, Choe and Park [4] proved that a compact connected embedded CMC hy-
persurface in a convex Euclidean solid cone which is perpendicular to the boundary of the cone is part of
a round sphere.

The rigidity of compact submanifold with free boundary is a very classical problem in submanifold theory.
For instance, Nitsche [13] proved that an immersed disk type constant mean curvature surface in a ball which
makes a constant angle with the boundary of the ball is part of a round sphere.

On weighted manifolds, Cañete and Rosales [3] showed the rigidity of compact stable hypersurfaces
with free boundary in a convex solid cone in Euclidean space with homogeneous density. Our next result
extends Choe and Park’s result to weighted Euclidean spaces (Rn+1, ds0, dμ̄), where ds0 is the Euclidean
metric.

Theorem 1.2. Let C be a convex solid cone with piecewise smooth boundary ∂C in a weighted manifold
(Rn+1, ds0, dμ̄) of non-negative m-Bakry–Émery tensor. Let M be a compact connected embedded hypersur-
face in C and Ω the bounded domain enclosed by M and ∂C. If the weighted mean curvature Hf of M is
positive everywhere, then

Volf (Ω) � m− 1
m

∫
M

1
Hf

dμ.

Moreover, the equality holds if and only if M is part of a round sphere centered at the vertex of C and
f is constant and m = n + 1.



Download	English	Version:

https://daneshyari.com/en/article/4615772

Download	Persian	Version:

https://daneshyari.com/article/4615772

Daneshyari.com

https://daneshyari.com/en/article/4615772
https://daneshyari.com/article/4615772
https://daneshyari.com/

