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In this paper, we give some Liouville-type theorems for Lp (p ∈ R) harmonic (resp.
subharmonic, superharmonic) functions on forward complete Finsler manifolds.
Moreover, we derive a gradient estimate for harmonic functions on a closed Finsler
manifold. As an application, one obtains that any harmonic function on a closed
Finsler manifold with nonnegative weighted Ricci curvature RicN (N ∈ (n,∞))
must be constant.
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1. Introduction

The classical Liouville theorem states that every nonnegative (or bounded) harmonic function on R
n

must be constant. Since the 1970s, various Liouville theorems for harmonic (subharmonic) functions have
been extensively studied on complete Riemannian manifolds. For example, in 1975 and 1976, S.-T. Yau
proved that every positive (or bounded) harmonic function on a complete Riemannian manifold with non-
negative Ricci curvature must be constant and there are no nonnegative Lp subharmonic functions and
no Lp-harmonic functions for any 1 < p < ∞ on a complete noncompact Riemannian manifold [21,22]. In
1994, Sturm extended Yau’s results for p ∈ R and p �= 1 [16]. Moreover, L1-Liouville theorems for harmonic
functions on a complete Riemannian manifold had been studied by P. Li and R. Schoen, etc. ([5,7] and refer-
ences therein). It is known that these Liouville theorems play an important role in analyzing the underlying
manifold. Recently, X. Li generalized the above various Liouville theorems for Laplacian operators to those
for general symmetric diffusion operators on complete Riemannian manifolds and gave some applications [6].

A natural question is how to generalize the above Liouville theorems on Riemannian manifolds to Finsler
manifolds. In this note, we study this question. Let (M,F ) be an n-dimensional Finsler manifold, which
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means a connected smooth manifold equipped with a Finsler structure (or metric) F : TM → [0,+∞).
For any weakly differentiable function u on (M,F ), define the gradient vector of u, denoted by ∇u, the
dual of the 1-form du under the Legendre transform. In general, the gradient vector field ∇u is not differ-
entiable at points with ∇u(x) = 0 even if (M,F ) and u are smooth. However it is continuous on M . To
consider the global analysis on a Finsler manifold M , throughout the paper we always assume that (M,F )
is orientable.

Let (M,F,m) be a Finsler manifold with a smooth volume measure m. Set dm = σ(x) dx. For a weakly
differentiable vector field V : M → TM , we define its divergence divm V : M → R through the identity

∫
M

φ divm V dm = −
∫
M

dφ(V ) dm, (1.1)

where φ ∈ C∞
c (M). With these preparations, we define the Finsler Laplacian Δm acting on functions

u ∈ W 1,2(M) formally by Δmu := divm(∇u). To be more precise, Δmu is the distributional Laplacian
defined through the identity

∫
M

φΔmu dm = −
∫
M

dφ(∇u) dm, (1.2)

for all φ ∈ C∞
c (M) [14,15]. For the sake of convenience, in the following we simply denote Δm as Δ.

It is worth mentioning that there are various definitions for the Laplacian in Finsler geometry, which
were introduced respectively by Bao and Lacky [1], Centore [2], Shen [14], Mo [9], Thomas [19], etc. since
the volume measure on M is not unique in Finsler geometry. In fact, these operators defined in [1,2,9,19] are
essentially weighted Laplacian operators on a weighted Riemannian manifold (M, g̃, dμ), which rely on some
Riemannian metric g̃ or volume measure on an underlying manifold induced by the pull-back of the Sasakian
metric from the slit tangent bundle TM \ {0} to SM . Moreover, they are linear elliptic operators. In this
paper, we use the more natural definition of the Laplacian introduced by Z. Shen in [14], which is from the
critical value of the energy functional. It is a nonlinear elliptic operator on an underlying manifold with
respect to any measure. All Finsler Laplacian operators mentioned here are reduced to the usual Laplace
operator on a Riemannian manifold if F is a Riemannian metric.

Given u ∈ C2(M), by (1.2), the Finsler Laplacian is locally expressed by

Δu(x) = divm

(
∇u(x)

)
= 1

σ(x)
∂

∂xi

(
σ(x)gij

(
x,∇u(x)

) ∂u

∂xj

)
, (1.3)

where x ∈ Mu := {x ∈ M | du(x) �= 0}, gij(x, y) := 1
2 [F 2(x, y)]yiyj is the fundamental tensor of F and

[gij(x, y)] := [gij(x, y)]−1. We say a function u ∈ C2(M) is a harmonic (resp. subharmonic, superharmonic)
function on M if Δu = (�,�)0 in a weak sense.

In this paper, the main purpose is to study some Liouville properties of harmonic (resp. subharmonic,
superharmonic) functions on a Finsler manifold. To state some results, we need to introduce some notation.

Let

Λ := sup
(x,y)∈TM\{0}

{
F (x,−y)
F (x, y)

}
, (1.4)

which is called the reversibility of F . We say the reversibility of F is finite if Λ < ∞. In particular, if F is
a Riemannian metric, then Λ = 1.

Fix a point x0 ∈ M , for r > 0, we denote a forward geodesic ball of radius r with center at x0 by B+
r (x0)

and the volume of B+
r (x0) with respect to the measure m by V (r). Let
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