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In this paper, we consider the following system

ẋ = (
A + ε Q̃ (t)

)
x,

where A is a constant matrix with different eigenvalues, and Q̃ (t) is quasi-periodic
with frequencies ω1,ω2, . . . ,ωr . Moreover, Q (θ) = Q (ωt) = Q̃ (t) has continuous partial

derivatives ∂b Q
∂θb

j
for j = 1,2, . . . , r, where b > 9

4 r + 1 ∈ Z , and the moduli of continuity

of ∂b Q
∂θb

j
satisfy a condition of finiteness (condition on an integral), which is more general

than a Hölder condition. Under suitable hypothesis of non-resonance conditions and non-
degeneracy conditions, we prove that for most sufficiently small ε, the system can be
reducible to a constant coefficient differentiable equation by means of a quasi-periodic
homeomorphism.

© 2013 Published by Elsevier Inc.

1. Introduction

Before stating our problem, we give some definitions and notations.

Definition 1.1. A function f is called a quasi-periodic function with frequencies ω = (ω1,ω2, . . . ,ωr) if f (t) = F (ω1t,ω2t,
. . . ,ωrt), where F (θ1, θ2, . . . , θr) is 2π -periodic in all arguments and θi = ωit , i = 1,2, . . . , r. If F (θ) (θ = (θ1, θ2, . . . , θr)) is
analytic on Dρ = {θ ∈ Cr | |Imθi| � ρ, i = 1,2, . . . , r}, we call f (t) analytic quasi-periodic on Dρ . Denote the sup-norm of f
on Dρ by ‖ f ‖ρ = supθ∈Dρ

|F (θ)|.

Definition 1.2. A matrix function Q (t) = (qij(t))1�i, j�n is called analytic quasi-periodic on Dρ if all qij(t) (i, j = 1,2, . . . ,n)
are analytic quasi-periodic on Dρ .

Define the norm of Q on Dρ by ‖Q ‖ρ = n × max1�i, j�n ‖qij‖ρ . Clearly, ‖Q 1 Q 2‖ρ � ‖Q 1‖ρ‖Q 2‖ρ . For convenience, if
Q is a constant matrix, we denote ‖Q ‖ = ‖Q ‖ρ . The average of Q is denoted by [Q ] = ([qij])1�i, j�n , where

[qij] = lim
T →∞

1

2T

T∫
−T

qi j(t)dt.

For the existence of its limit, see [2].
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Definition 1.3. If f (x) : Rr → R is continuous in x = (x1, x2, . . . , xr), we define ‖ f (x)‖M = supx∈M | f (x)| for all functions
f defined and bounded on some set M ⊆ Rr . Moreover, if a matrix function Q (x) = (qij(x))1�i, j�n is continuous in x =
(x1, x2, . . . , xr), we define ‖Q (x)‖M = n × max1�i, j�n ‖qij(x)‖M for Q = (qij)1�i, j�n defined and bounded on some set
M ⊆ Rr .

Problems. We consider the linear system ẋ = A(t)x, x ∈ Rn , where A(t) is an n×n matrix. The well-known Floquent theorem
tells us that if A(t) is a T -periodic matrix, then the linear differential equation ẋ = A(t)x is reducible to the constant coeffi-
cient differential equation ẋ = Bx by a T -periodic change of variables. For the quasi-periodic coefficient system, R.A. Johnson
and G.R. Sell [8] proved that if the quasi-periodic coefficients matrix A(t) satisfies “full spectrum” conditions, then ẋ = A(t)x
is reducible. That is, there exists a quasi-periodic non-singular transformation x = φ(t)y, where φ(t) and φ(t)−1 are quasi-
periodic and bounded, such that ẋ = A(t)x is transformed to ẏ = B y, where B is a constant matrix. In [9], Jorba and Simó
considered the reducibility of the following linear quasi-periodic system

ẋ = (
A + εQ (t)

)
x, x ∈ Rn, (1.1)

where A is a constant matrix with different eigenvalues. They proved that under the non-resonance conditions and the
non-degeneracy conditions, there exists a non-empty Cantor subset E , such that for ε ∈ E , the system (1.1) is reducible.
In [15], J. Xu considered the linear quasi-periodic system

ẋ = (
A + εQ (t)

)
x, x ∈ Rn, (1.2)

where A is a constant matrix with multiple eigenvalues. He proved that under the non-resonance conditions and the
non-degeneracy conditions, there exists a non-empty Cantor subset E , such that the system (1.2) is reducible for ε ∈ E .

In the paper [6], to study one-dimensional linear Schrödinger equation

d2q

dt2
+ Q (ωt)q = Eq,

Eliasson considered the following equivalent two-dimensional quasi-periodic Hamiltonian system:

ṗ = (
E − Q (ωt)

)
q, q̇ = p, (1.3)

where Q is an analytic quasi-periodic function and E is an energy parameter. The result in [6] implies that for almost every
sufficiently large E , the quasi-periodic system (1.3) is reducible.

Recently, a similar problem was considered by Her and You [7]. Let Cω(Λ, gl(m, C)) be the set of m × m matrices A(λ)

depending analytically on a parameter λ in a closed interval Λ ⊂ R . In [7], Her and You considered one-parameter families
of quasi-periodic linear equations

ẋ = (
A(λ) + g(ω1t, . . . ,ωlt, λ)

)
x, (1.4)

where A ∈ Cω(Λ, gl(m, C)), and g is analytic and sufficiently small. They proved that under some non-resonance conditions
and some non-degeneracy conditions, there exists an open and dense set A in Cω(Λ, gl(m, C)), such that for each A ∈ A,
the system (1.4) is reducible for almost all λ ∈ Λ.

However, these papers only deal with the reducibility of the analytic system. With respect to the Hamiltonian system,
Moser [12] proved the existence of the maximal-dimensional invariant tori under the assumption that the perturbation
h ∈ Cl with l > 2n + 2 (n denotes the dimension of angular variables). In [13], Pöschel obtained the maximal-dimensional
invariant tori for the Hamiltonian system with l > 2n. In [4], Chierchia and Qian obtained for Hamiltonian functions of
class Cl with any l > 6n + 5, the lower-dimensional quasi-periodic solutions are proved to be of class C p for any p with
2 < p < p∗ for a suitable p∗ = p∗(n, l) > 2 (which tends to infinity when l → ∞). In [1], J. Albrecht proved the existence
of the maximal-dimensional invariant tori in the Hamiltonian system, which are analytic and integrable except a 2n times
continuously differentiable perturbation, provided that the moduli of continuity of the 2n-th partial derivatives of the per-
turbation satisfy a condition of finiteness (condition on an integral), which is more general than a Hölder condition. In [3],
Cheng obtained the non-existence of the maximal-dimensional invariant tori for the Hamiltonian system under Cl pertur-
bations with 0 < l < 2n. In contrast to this result, KAM theory guarantees (under more general assumptions) the persistence
of the maximal-dimensional invariant tori for the Hamiltonian system under Cl perturbations with l > 2n.

Motivated by [1], in this paper, we consider the reducibility for the finitely differentiable quasi-periodic linear system

ẋ = (
A + ε Q̃ (t)

)
x, x ∈ Rn, (1.5)

where A is a constant n × n matrix with different eigenvalues, Q̃ (t) is an n × n quasi-periodic matrix with respect to t , and
ε ∈ (0, ε0) is a small perturbation parameter.
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