Decay rate and radial symmetry of the exponential elliptic equation

Kin Ming Hui ${ }^{\text {a }}$, Sunghoon Kim ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Institute of Mathematics, Academia Sinica, Taipei, Taiwan, ROC
${ }^{\mathrm{b}}$ Department of Mathematics, School of Natural Sciences, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 420-743, Republic of Korea

A R T I C L E IN F O

Article history:

Received 6 November 2012
Available online 4 December 2013
Submitted by V. Radulescu

Keywords:

Decay rate
Exponential elliptic equation
Radial symmetry

ABSTRACT

Let $n \geqslant 3, \alpha, \beta \in \mathbb{R}$, and let v be a solution of $\Delta v+\alpha e^{v}+\beta x \cdot \nabla e^{v}=0$ in \mathbb{R}^{n}, which satisfies the conditions $\lim _{R \rightarrow \infty} \frac{1}{\log R} \int_{1}^{R} \rho^{1-n}\left(\int_{B_{\rho}} e^{v} d x\right) d \rho \in(0, \infty)$ and $|x|^{2} e^{v(x)} \leqslant A_{1}$ in \mathbb{R}^{n}. We prove that $\frac{v(x)}{\log |x|} \rightarrow-2$ as $|x| \rightarrow \infty$ and $\alpha>2 \beta$. As a consequence we prove that there exists a constant $R_{0}>0$ such that if the solution $v(x)$ is radially symmetric for $|x|<R_{0}$ and satisfies some gradient bound, then v is radially symmetric about the origin in \mathbb{R}^{n}.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we will study various properties of the solution v of the nonlinear elliptic equation

$$
\begin{equation*}
\Delta v+\alpha e^{v}+\beta x \cdot \nabla e^{v}=0 \quad \text { in } \mathbb{R}^{n} \tag{1.1}
\end{equation*}
$$

for any $n \geqslant 3$ where $\alpha, \beta \in \mathbb{R}$ are some constants. Let $v=\log u$. Then u satisfies

$$
\begin{equation*}
\Delta \log u+\alpha u+\beta x \cdot \nabla u=0, \quad u>0, \text { in } \mathbb{R}^{n} \tag{1.2}
\end{equation*}
$$

As observed by S.Y. Hsu [9], the radial symmetric solution of (1.2) is the singular limit of the radial symmetric solutions of the nonlinear elliptic equation,

$$
\begin{equation*}
\Delta\left(u^{m} / m\right)+\alpha u+\beta x \cdot \nabla u=0, \quad u>0, \text { in } \mathbb{R}^{n} \tag{1.3}
\end{equation*}
$$

as $m \searrow 0$. On the other hand as observed by P. Daskalopoulos and N. Sesum [4], K.M. Hui and S.H. Kim [10,11], (1.2) also arises in the study of the extinction behaviour and global behaviour of the solutions of the logarithmic diffusion equation,

$$
\begin{equation*}
u_{t}=\Delta \log u, \quad u>0, \text { in } \mathbb{R}^{n} \tag{1.4}
\end{equation*}
$$

(1.2) also arises in the study of self-similar solutions of (1.4) [4,10,11,15,16]. Hence in order to understand the behaviour of the solutions of (1.3) and (1.4) it is important to understand the properties of solutions of (1.1).

[^0]In [8] S.Y. Hsu proved that there exists a radially symmetric solution of (1.1) (or equivalently (1.2)) if and only if either $\alpha \geqslant 0$ or $\beta>0$. She also proved that when $n \geqslant 3$ and $\alpha>\max (2 \beta, 0)$, then any radially symmetric solution v of (1.1) satisfies

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty}|x|^{2} e^{v(x)}=\frac{2(n-2)}{\alpha-2 \beta} \tag{1.5}
\end{equation*}
$$

By (1.5) and a direct computation the radially symmetric solution v of (1.1) satisfies

$$
\begin{align*}
& \lim _{|x| \rightarrow \infty} \frac{v(x)}{\log |x|}=-2 \tag{1.6}\\
& A_{0}:=\lim _{R \rightarrow \infty} \frac{1}{\log R} \int_{1}^{R} \frac{1}{\rho^{n-1}}\left(\int_{|x|<\rho} e^{v} d x\right) d \rho \in(0, \infty) \tag{1.7}
\end{align*}
$$

and

$$
\begin{equation*}
|x|^{2} e^{v(x)} \leqslant A_{1} \quad \forall x \in \mathbb{R}^{n} \tag{1.8}
\end{equation*}
$$

for some constant $A_{1}>0$. A natural question is if v is a solution of (1.1) which satisfies (1.7) and (1.8) for some constant $A_{1}>0$, will v satisfy (1.6) and is v radially symmetric about the origin? We answer the first question affirmatively in this paper. For the second question we prove that there exists a constant $R_{0}>0$ such that if the solution $v(x)$ is radially symmetric for $|x|<R_{0}$ and satisfies some gradient bound, then v is radially symmetric about the origin in \mathbb{R}^{n}.

We say that v is a solution of (1.1) if v is continuous in \mathbb{R}^{n} and satisfies

$$
\int_{\mathbb{R}^{n}}\left[v \Delta \eta+(\alpha-n \beta) e^{v}-\beta(x \cdot \nabla) e^{v}\right] d x=0 \quad \forall \eta \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)
$$

Note that if v is a solution of (1.1), then by standard elliptic regularity theory [6] and a bootstrap argument $v \in C^{\infty}\left(\mathbb{R}^{n}\right)$. For any solution v of (1.1) we define the rotation operator $\Phi_{i j}$ by

$$
\Phi_{i j}(x)=x_{i} v_{x_{j}}(x)-x_{j} v_{x_{i}}(x) \quad \forall x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, i \neq j, i, j=1, \ldots, n .
$$

Note that if we write $x_{1}=\rho \cos \theta$ and $x_{2}=\rho \sin \theta$ where $\rho=\sqrt{x_{1}^{2}+x_{2}^{2}}$, then $\Phi_{12}(x)=\frac{\partial v}{\partial \theta}(x)$.
We are now ready to state the main results of this paper.
Theorem 1.1. Let $n \geqslant 3$ and $\alpha, \beta \in \mathbb{R}$. Suppose v is a solution of (1.1) which satisfies (1.7) and (1.8) for some constant $A_{1}>0$. Then v satisfies (1.6) and $\alpha>2 \beta$.

Corollary 1.2. Let $n \geqslant 3$. Suppose $\alpha \leqslant 2 \beta$. Then (1.1) does not have any solution that satisfies both (1.7) and (1.8) for some constant $A_{1}>0$.

Proposition 1.3. Let $n \geqslant 3$ and $2 \beta<\alpha<n \beta$. Suppose v is a solution of (1.1) which satisfies (1.7), (1.8),

$$
\begin{equation*}
\|x \cdot \nabla v\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leqslant C<\infty, \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty}|x|^{n-2}\left|\Phi_{i j}(x)\right|=0 \quad \forall i \neq j, i, j=1, \ldots, n \tag{1.10}
\end{equation*}
$$

Then there exists a constant $R_{0}>0$ such that if v is radially symmetric in $B_{R_{0}}$, then v is radially symmetric in \mathbb{R}^{n}.
Note that although there are many research done on the radial symmetry of elliptic equations without first order term by B. Gidas, W.M. Ni, and L. Nirenberg [5], L. Caffaralli, B. Gidas and J. Spruck [2], W. Chen and C. Li [3], S.D. Taliaferro [14] and others, very little is known about the radial symmetry of elliptic equations with non-zero first order term. The reason is that one cannot use the moving plane technique to prove the radial symmetry of the solution for elliptic equations with non-zero first order term. We refer the readers to the paper [1] by J.S. Baek for various methods on proving symmetry of solutions of elliptic equations.

The recent paper [13] by E. Kamalinejad and A. Moradifam is one of the few papers that studies the radial symmetry of elliptic equations with non-zero first order term. Hence our result on radial symmetry is new.

The plan of the paper is as follows. In Section 2 we will prove Theorem 1.1 and Corollary 1.2. In Section 3 we will prove Proposition 1.3. For any $r>0, x_{0} \in \mathbb{R}^{n}$, let $B_{r}\left(x_{0}\right)=\left\{x \in \mathbb{R}^{n}:\left|x-x_{0}\right|<r\right\}$ and $B_{r}=B_{r}(0)$. Let $S^{n-1}=\left\{x \in \mathbb{R}^{n}:|x|=1\right\}$. We will let $n \geqslant 3, \alpha, \beta \in \mathbb{R}$, and let v be a solution of (1.1) which satisfies both (1.7) and (1.8) for some constant $A_{1}>0$ for the rest of the paper. We will also let A_{0} be given by (1.7) for the rest of the paper.

https://daneshyari.com/en/article/4615834

Download Persian Version:

https://daneshyari.com/article/4615834

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: kmhui@gate.sinica.edu.tw (K.M. Hui), math.s.kim@catholic.ac.kr (S.H. Kim).

