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Let f (t) be an operator monotone function. Then A � B implies f (A) � f (B), but the
converse implication is not true. Let A � B be the geometric mean of A, B � 0. If A � B ,
then B−1 � A � I; the converse implication is not true either. We will show that if
f (λB + I)−1 � f (λA + I) � I for all sufficiently small λ > 0, then f (λA + I) � f (λB + I) and
A � B . Moreover, we extend it to multi-variable matrices means.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In what follows, H means a complex Hilbert space with inner product 〈·,·〉, and an operator means a bounded linear
operator on H. An operator A is said to be positive (denoted by A � 0) if and only if 〈Ax, x〉 � 0 for all x ∈ H, and A � B
means B − A is positive. Moreover, an operator A is said to be positive definite (denoted by A > 0) if A is positive and
invertible.

A real continuous function f (t) defined on a real interval I is said to be operator monotone, provided A � B implies
f (A) � f (B) for any two bounded self-adjoint operators A and B whose spectra are in I . The Loewner–Heinz inequality
means the power function ta is operator monotone on [0,∞) for 0 < a < 1. log t is operator monotone on (0,∞) too.
A continuous function f defined on I is called an operator convex function on I if f (sA + (1 − s)B) � sf (A) + (1 − s) f (B)

for every 0 < s < 1 and for every pair of bounded self-adjoint operators A and B whose spectra are both in I . An operator
concave function is likewise defined. If I = (0,∞), then f (t) is operator monotone on I if and only if f (t) is operator concave
and f (∞) > −∞ ([14], cf. [5]). This implies that every operator monotone function on (0,∞) is operator concave. Then the
associated operator mean A σ B is defined and represented as

A σ B = A
1
2 f

(
A− 1

2 B A− 1
2
)

A
1
2 (1.1)

if A is invertible [7]. σ is said to be symmetric if A σ B = B σ A for every A, B . σ is symmetric if and only if f (t) = t f (1/t).
When f (t) = ta (0 < a < 1), the associated mean is denoted by A �a B and called weighted geometric mean. In particular,
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the case of a = 1
2 is the usual geometric mean and simply denoted by A � B . The arithmetic mean ∇ and the harmonic

mean ! are naturally defined. It is well-known that A ! B � A � B � A ∇ B for every A, B � 0; of course these are symmetric.
It is well-known that 0 < A � B implies that B−1 � A � A−1 � A = I , but the converse does not hold.

In the recent years, geometric means of n-matrices are studied by many authors. Let Pm be the set of all m-by-m positive
definite matrices. Define ω = (w1, . . . , wn) be a probability vector, i.e., wi > 0 for i = 1, . . . ,n and

∑n
i=1 wi = 1. Let �n be

the set of all probability vectors. For ω = (w1, . . . , wn) ∈ �n , the Karcher mean Λ(ω; A1, . . . , An) of A1, . . . , An ∈ Pm is
characterized as the unique positive definite solution of the matrix equation [12]

n∑
i=1

wi log
(

X− 1
2 Ai X− 1

2
) = 0.

If ω = ( 1
n , . . . , 1

n ) ∈ �n , then the Karcher mean is simply written by Λ(A1, . . . , An). In the two matrices case, A, B ∈ Pm , the
Karcher mean coincides with the weighted geometric mean. We note that the above matrix equation is called the Karcher
equation [6]. The Karcher mean inherits many properties of geometric means (see [2,12,9,3]). For instance,

∑n
i=1 wi Ai � I

implies Λ(ω; A1, . . . , An) � I for ω = (w1, . . . , wn) ∈ �n in [11,16].
Related to the Karcher mean, the power mean is also discussed in [10]. The power mean of n-matrices is inspired from

the power mean of positive numbers. For t ∈ [−1,1] \ {0} and ω = (w1, . . . , wn) ∈ �n , the power mean Pt(ω; A1, . . . , An) of
A1, . . . , An ∈ Pm is defined as the unique positive definite solution of the matrix equation

n∑
i=1

wi(X �t Ai) = X . (1.2)

If ω = ( 1
n , . . . , 1

n ) ∈ �n , then the power mean is simply written by Pt(A1, . . . , An). It is shown in [10] that the power mean
of two matrices, A, B ∈ Pm , coincides with

Pt(1 − w, w; A, B) = A
1
2
(
(1 − w)I + w

(
A− 1

2 B A− 1
2
)t) 1

t A
1
2 .

The power mean interpolates among the arithmetic, Karcher (geometric) and harmonic means. More precisely, the Karcher
mean can be considered as the limit point of the power mean as t → 0, it is the same situation to the number case. We
will introduce the details of relations among these means in Section 3.

The aim of this paper is to investigate the converse of Loewner–Heinz inequality in the view point of operator mean. It
is organized as follows: In Section 2, we shall show that if f (λB + I)−1 � f (λA + I) � I for all sufficiently small λ � 0, then
f (λA + I) � f (λB + I) and A � B . Moreover, we will deal with a symmetric operator mean. In Section 3, we will extend
the results obtained in Section 2 in the case of the power means and the Karcher mean.

2. Operator inequality and operator mean

We begin by recalling a few results which we will need later. If A � B � I , then A p � B p � I for all p � 1 [1]. Actually,
Ap � B p is decreasing for p � 1 if A � B � I (see Corollary 3.3 of [13]). The following well-known result for positive invertible
operators is essential (see [4]):

log A � log B ⇐⇒ B−p � Ap � I for all p � 0. (2.1)

In this paper we deal with a non-constant operator monotone function f (t) defined on a neighborhood of t = t0. How-
ever we assume t0 = 1 for simplicity. In this case, for every bounded self-adjoint operator A the function f (λA + I) is
well-defined for sufficiently small λ. We also note that f ′(1) > 0.

Theorem 1. Let f (t) > 0 be a non-constant operator monotone function defined on a neighborhood of t = 1 with f (1) = 1, and let A
and B be bounded self-adjoint operators. Then the following are equivalent:

(i) A � B,
(ii) λA + I � λB + I for every λ � 0,

(iii) f (λA + I) � f (λB + I) for all sufficiently small λ � 0,
(iv) f (λB + I)−1 � f (λA + I) � I for all sufficiently small λ � 0.

Proof. The equivalence of (i), (ii) and (iii) were shown in [15]. Since f (λB + I) is positive and invertible for sufficiently
small λ � 0, by (2.1), (iii) gives (iv). Assume (iv). For an arbitrary p > 0 take λ so that 0 < λ � p. Then as mentioned above
we have

f (λB + I)−
p
λ � f (λA + I)

p
λ � I,

because p/λ � 1. We now show the next claim:
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