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The lowest eigenvalue of non-commutative harmonic oscillators Q(α, β) (α > 0,
β > 0, αβ > 1) is studied. It is shown that Q(α, β) can be decomposed into four
self-adjoint operators,

Q(α, β) =
⊕

σ=±,p=1,2
Qσp,

and all the eigenvalues of each operator Qσp are simple. We show that the low-
est eigenvalue of Q(α, β) is simple whenever α �= β. Furthermore a Jacobi matrix
representation of Qσp is given and spectrum of Qσp is considered numerically.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The non-commutative harmonic oscillator is introduced by A. Parmeggiani and M. Wakayama [8–10] as
a non-commutative extension of harmonic oscillators. We also refer to [7] which is a first account about
non-commutative harmonic oscillators and of their spectral properties. It is defined by

Q = Q(α, β) = A⊗
(
−1

2
d2

dx2 + 1
2x

2
)

+ J ⊗
(
x
d

dx
+ 1

2

)
, (1.1)

as an operator in H = C
2 ⊗ L2(R). Here A, J ∈ Mat2(R), A is positive definite symmetric, and J skew-

symmetric. Furthermore A + iJ is positive definite. It is shown in [9,10] that A and J can be assumed to
be A =

(
α 0
0 β

)
, J =

( 0 −1
1 0

)
, and α and β satisfy

α > 0, β > 0, αβ > 1. (1.2)
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We fix A and J as above, and throughout this paper we assume (1.2). Under (1.2), Q is self-adjoint on the
domain D(Q) = C

2 ⊗ (D(d2/dx2) ∩D(x2)) and has purely discrete spectrum E0 � E1 � E2 � · · · ↗ ∞.
When α = β, Q(α, β) is equivalent to the direct sum of a harmonic oscillator. Then Ej = Ej+1 = 1

2 (1 +
j)
√
α2 − 1 for j = 0, 2, 4, . . . . In the case of α �= β, however, the spectrum of Q(α, β) is nontrivial, and

exploring properties of the spectrum is the main purpose of the present paper.
An eigenvector associated with the lowest eigenvalue E = E0 is called a ground state in this paper.

A long-standing problem concerning eigenvalues of Q(α, β) is to determine their multiplicity explicitly. Let
α �= β. Let En = En(α, β) denote the n-th eigenvalue of Q(α, β). The map cn : (α, β) 	→ En(α, β) ∈ R is
called an eigenvalue-curve. To consider the multiplicity of eigenvalues is reduced to considering crossing or
no crossing of eigenvalue-curves.

We state a short history concerning studies of the multiplicity of eigenvalues of Q. In [10] it is shown
that the multiplicity of any eigenvalues of Q is at most three and an alternative proof is given in [5]. At
a numerical level it is found in [4] that eigenvalue-curves cross at some points but the lowest eigenvalue is
simple. The multiplicity of eigenvalues of Q is also considered in [3], where it is derived that

(
n− 1

2

)
min{α, β}

√
αβ − 1
αβ

� E2n−1 � E2n �
(
n− 1

2

)
max{α, β}

√
αβ − 1
αβ

for n = 1, 2, 3, . . . . From this we can see that the multiplicity of E is at most two if β < 3α or α < 3β. In
[6] it is shown that E is simple but for sufficiently large αβ. Furthermore in [2] it is proven that the lowest
eigenvalue is at most two and all the ground states are even for (α, β) ∈ D√

2, where D√
2 = {(α, β) | α, β >√

2 }, and it is also shown that E is simple for (α, β) ∈ D for some subset D ⊂ D√
2. Recently Wakayama

[11] breaks through in studying the multiplicity of E, in that he proves that if all the ground states are
even, then E is simple whenever α �= β. Combining [11] with [2], it is immediate to see that E is simple for
(α, β) ∈ D√

2.
In this paper we settle down the question concerning the multiplicity of the lowest eigenvalue of Q,

i.e., we prove that E is simple for all values of α and β (α �= β), see Theorem 3.1. Moreover no crossing
between eigenvalue-curves associated with an odd eigenvector and an even eigenvector can occur, as proved
in Corollary 5.2.

This paper is organized as follows. In Section 2, we decompose Q(α, β) into four self-adjoint operators:
Q(α, β) =

⊕
σ=±,p=1,2 Qσp. It is shown that each Qσp is equivalent to some Jacobi matrix Q̂σp, and all

the eigenvalues of Qσp are simple. In Section 3, we show that the lowest eigenvalue of Q(α, β) is simple. In
Section 4, we construct a unitary transformation Uσp such that e−tU−1

σp QσpUσp is positivity improving, and it
is shown that the ground state is in a positive cone. In Section 5, we show that Q̂−p−Q̂+p � Δ(α, β), p = 1, 2,
for some Δ(α, β). In particular, if Δ(α, β) > 0, then there is no crossing between the n-th eigenvalue-curve
of Q−p and that of Q+p. In Section 6, we show some numerical results.

2. Decomposition of Q(α, β) and Jacobi matrix

2.1. Decomposition of Q(α, β)

Let a = 1√
2(x + d

dx ) and a∗ = 1√
2(x − d

dx ) be the annihilation operator and the creation operators,
respectively. In terms of a and a∗, Q can be expressed as

Q = A

(
a∗a + 1

2

)
+ J

2
(
aa− a∗a∗

)
. (2.1)

Let H+ (resp. H−) be the set of even (resp. odd) functions in H, and P+ (resp. P−) be the orthogonal
projection onto H+ (resp. H−). Let |n〉 be the n-th normalized eigenvector of a∗a, i.e., |n〉 = 1√

n! (a
∗)n|0〉
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