

Spectral analysis of non-commutative harmonic oscillators: The lowest eigenvalue and no crossing

Fumio Hiroshima ${ }^{\text {a }}$, Itaru Sasaki ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Faculty of Mathematics, Kyushu University, Fukuoka 819-0395, Japan
b Department of Mathematical Sciences, Shinshu University, Matsumoto 390-8621, Japan

A R T I C L E I N F O

Article history:
Received 12 June 2013
Available online 8 January 2014
Submitted by Goong Chen
Keywords:
Non-commutative harmonic oscillator
Multiplicity
The lowest eigenvalue
Crossing
No crossing

A B S T R A C T

The lowest eigenvalue of non-commutative harmonic oscillators $Q(\alpha, \beta)(\alpha>0$, $\beta>0, \alpha \beta>1)$ is studied. It is shown that $Q(\alpha, \beta)$ can be decomposed into four self-adjoint operators,

$$
Q(\alpha, \beta)=\bigoplus_{\sigma= \pm, \mathrm{p}=1,2} Q_{\sigma \mathrm{p}}
$$

and all the eigenvalues of each operator $Q_{\sigma \mathrm{p}}$ are simple. We show that the lowest eigenvalue of $Q(\alpha, \beta)$ is simple whenever $\alpha \neq \beta$. Furthermore a Jacobi matrix representation of $Q_{\sigma \mathrm{p}}$ is given and spectrum of $Q_{\sigma \mathrm{p}}$ is considered numerically.
© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The non-commutative harmonic oscillator is introduced by A. Parmeggiani and M. Wakayama [8-10] as a non-commutative extension of harmonic oscillators. We also refer to [7] which is a first account about non-commutative harmonic oscillators and of their spectral properties. It is defined by

$$
\begin{equation*}
Q=Q(\alpha, \beta)=A \otimes\left(-\frac{1}{2} \frac{d^{2}}{d x^{2}}+\frac{1}{2} x^{2}\right)+J \otimes\left(x \frac{d}{d x}+\frac{1}{2}\right) \tag{1.1}
\end{equation*}
$$

as an operator in $\mathcal{H}=\mathbb{C}^{2} \otimes L^{2}(\mathbb{R})$. Here $A, J \in \operatorname{Mat}_{2}(\mathbb{R}), A$ is positive definite symmetric, and J skewsymmetric. Furthermore $A+i J$ is positive definite. It is shown in $[9,10]$ that A and J can be assumed to be $A=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right), J=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$, and α and β satisfy

$$
\begin{equation*}
\alpha>0, \quad \beta>0, \quad \alpha \beta>1 . \tag{1.2}
\end{equation*}
$$

[^0]We fix A and J as above, and throughout this paper we assume (1.2). Under (1.2), Q is self-adjoint on the domain $D(Q)=\mathbb{C}^{2} \otimes\left(D\left(d^{2} / d x^{2}\right) \cap D\left(x^{2}\right)\right)$ and has purely discrete spectrum $E_{0} \leqslant E_{1} \leqslant E_{2} \leqslant \cdots \nearrow \infty$. When $\alpha=\beta, Q(\alpha, \beta)$ is equivalent to the direct sum of a harmonic oscillator. Then $E_{j}=E_{j+1}=\frac{1}{2}(1+$ $j) \sqrt{\alpha^{2}-1}$ for $j=0,2,4, \ldots$. In the case of $\alpha \neq \beta$, however, the spectrum of $Q(\alpha, \beta)$ is nontrivial, and exploring properties of the spectrum is the main purpose of the present paper.

An eigenvector associated with the lowest eigenvalue $E=E_{0}$ is called a ground state in this paper. A long-standing problem concerning eigenvalues of $Q(\alpha, \beta)$ is to determine their multiplicity explicitly. Let $\alpha \neq \beta$. Let $E_{n}=E_{n}(\alpha, \beta)$ denote the n-th eigenvalue of $Q(\alpha, \beta)$. The map $c_{n}:(\alpha, \beta) \mapsto E_{n}(\alpha, \beta) \in \mathbb{R}$ is called an eigenvalue-curve. To consider the multiplicity of eigenvalues is reduced to considering crossing or no crossing of eigenvalue-curves.

We state a short history concerning studies of the multiplicity of eigenvalues of Q. In [10] it is shown that the multiplicity of any eigenvalues of Q is at most three and an alternative proof is given in [5]. At a numerical level it is found in [4] that eigenvalue-curves cross at some points but the lowest eigenvalue is simple. The multiplicity of eigenvalues of Q is also considered in [3], where it is derived that

$$
\left(n-\frac{1}{2}\right) \min \{\alpha, \beta\} \sqrt{\frac{\alpha \beta-1}{\alpha \beta}} \leqslant E_{2 n-1} \leqslant E_{2 n} \leqslant\left(n-\frac{1}{2}\right) \max \{\alpha, \beta\} \sqrt{\frac{\alpha \beta-1}{\alpha \beta}}
$$

for $n=1,2,3, \ldots$. From this we can see that the multiplicity of E is at most two if $\beta<3 \alpha$ or $\alpha<3 \beta$. In [6] it is shown that E is simple but for sufficiently large $\alpha \beta$. Furthermore in [2] it is proven that the lowest eigenvalue is at most two and all the ground states are even for $(\alpha, \beta) \in D_{\sqrt{2}}$, where $D_{\sqrt{2}}=\{(\alpha, \beta) \mid \alpha, \beta>$ $\sqrt{2}\}$, and it is also shown that E is simple for $(\alpha, \beta) \in D$ for some subset $D \subset D_{\sqrt{2}}$. Recently Wakayama [11] breaks through in studying the multiplicity of E, in that he proves that if all the ground states are even, then E is simple whenever $\alpha \neq \beta$. Combining [11] with [2], it is immediate to see that E is simple for $(\alpha, \beta) \in D_{\sqrt{2}}$.

In this paper we settle down the question concerning the multiplicity of the lowest eigenvalue of Q, i.e., we prove that E is simple for all values of α and $\beta(\alpha \neq \beta)$, see Theorem 3.1. Moreover no crossing between eigenvalue-curves associated with an odd eigenvector and an even eigenvector can occur, as proved in Corollary 5.2.

This paper is organized as follows. In Section 2, we decompose $Q(\alpha, \beta)$ into four self-adjoint operators: $Q(\alpha, \beta)=\bigoplus_{\sigma= \pm, \mathrm{p}=1,2} Q_{\sigma \mathrm{p}}$. It is shown that each $Q_{\sigma \mathrm{p}}$ is equivalent to some Jacobi matrix $\widehat{Q}_{\sigma \mathrm{p}}$, and all the eigenvalues of $Q_{\sigma \mathrm{p}}$ are simple. In Section 3, we show that the lowest eigenvalue of $Q(\alpha, \beta)$ is simple. In Section 4, we construct a unitary transformation $U_{\sigma \mathrm{p}}$ such that $e^{-t U_{\sigma_{\mathrm{P}}}^{-1} Q_{\sigma_{\mathrm{P}} U_{\sigma \mathrm{P}}}}$ is positivity improving, and it is shown that the ground state is in a positive cone. In Section 5 , we show that $\widehat{Q}_{-\mathrm{p}}-\widehat{Q}_{+\mathrm{p}} \geqslant \Delta(\alpha, \beta), \mathrm{p}=1,2$, for some $\Delta(\alpha, \beta)$. In particular, if $\Delta(\alpha, \beta)>0$, then there is no crossing between the n-th eigenvalue-curve of $Q_{-\mathrm{p}}$ and that of $Q_{+\mathrm{p}}$. In Section 6 , we show some numerical results.

2. Decomposition of $Q(\alpha, \beta)$ and Jacobi matrix

2.1. Decomposition of $Q(\alpha, \beta)$

Let $a=\frac{1}{\sqrt{2}}\left(x+\frac{d}{d x}\right)$ and $a^{*}=\frac{1}{\sqrt{2}}\left(x-\frac{d}{d x}\right)$ be the annihilation operator and the creation operators, respectively. In terms of a and a^{*}, Q can be expressed as

$$
\begin{equation*}
Q=A\left(a^{*} a+\frac{1}{2}\right)+\frac{J}{2}\left(a a-a^{*} a^{*}\right) . \tag{2.1}
\end{equation*}
$$

Let \mathcal{H}_{+}(resp. \mathcal{H}_{-}) be the set of even (resp. odd) functions in \mathcal{H}, and P_{+}(resp. P_{-}) be the orthogonal projection onto $\mathcal{H}_{+}\left(\right.$resp. $\left.\mathcal{H}_{-}\right)$. Let $|n\rangle$ be the n-th normalized eigenvector of $a^{*} a$, i.e., $|n\rangle=\frac{1}{\sqrt{n!}}\left(a^{*}\right)^{n}|0\rangle$

https://daneshyari.com/en/article/4615868

Download Persian Version:

https://daneshyari.com/article/4615868

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: hiroshima@math.kyushu-u.ac.jp (F. Hiroshima), isasaki@shinshu-u.ac.jp (I. Sasaki).

