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In the present article we provide a sufficient condition for a closed set F ∈ R
d to

have the following property which we call c-removability: Whenever a continuous
function f : Rd → R is locally convex on the complement of F , it is convex on
the whole R

d. We also prove that no generalized rectangle of positive Lebesgue
measure in R

2 is c-removable. Our results also answer the following question asked
in an article by Jacek Tabor and Józef Tabor (2010) [5]: Assume the closed set
F ⊂ R

d is such that any locally convex function defined on R
d \ F has a unique

convex extension on R
d. Is F necessarily intervally thin (a notion of smallness of sets

defined by their “essential transparency” in every direction)? We prove the answer
is negative by finding a counterexample in R

2.
© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The present article is mostly motivated by the work [5] about negligible sets for convexity of functions
in R

d, where an interesting open problem was raised. We shall need the following notion introduced in [5].
A set A ⊂ R

d is called intervally thin if for any x, y ∈ R
d and any ε > 0 there exist x′ ∈ B(x, ε) and

y′ ∈ B(y, ε) such that [x′, y′] ∩A = ∅.

Problem TT. Let A ⊂ R
n be closed. Suppose that for an arbitrary open set U containing A every locally

convex function f : U \A → R has a unique extension on U . Is it then necessarily true that A is intervally
thin?

Arguably our main result is that the answer to this question is negative. Example 4.2 and Remark 4.3
provide a closed set K which is not intervally thin, but which enjoys the “unique extension property for
convex functions” (UEP) from Problem TT. We took the liberty of calling this set K “the Holey Devil’s
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Staircase” since it is the graph of the classical Cantor function (the Devil’s Staircase) minus all the horizontal
open line segments contained in the graph (in other words, it is the graph of the restriction of the Cantor
function to the Cantor set).

One can readily verify that the Holey Devil’s Staircase is not intervally thin. It is enough to consider the
last intersection of the graph of the Cantor function with any line segment with endpoints in (−∞, 0)×(0, 1

2)
and (1,∞) × (1

2 , 1); clearly, this intersection is an element of K.
To prove that K has the UEP, is considerably more difficult and our effort in this direction has inspired

a large part of this article.
The main result of [5] is essentially the following theorem. Note that since we restrict our attention to

convex functions (as opposed to ω-semiconvex functions studied in [5]), we change the formulation of the
theorem accordingly:

Theorem TT. Let U be an open subset of R
d and let A be a closed intervally thin subset of U . Let f :

U \A → R be a locally convex function. Then f has a unique locally convex extension on U .

The proof of this theorem consists of two principal steps:

(1) First, one proves that there is a unique continuous extension; this is the more difficult part.
(2) Once one has the continuous extension, it is then easy to prove that it is convex.

Our aim is to apply this scheme to our set K. It turns out that in this case the easier step is (1); we only
need a simple generalization of the corresponding theorem from [5]—which we have in Lemma 4.1.

Performing step (2) for K is the crucial part and it motivates the introduction of c-removable sets with
the consequent natural question: Which sets are c-removable?

Definition. We say that a closed set A ⊂ R
d is c-removable if the following is true: Every real function f on

R
d is convex whenever it is continuous on R

d and locally convex on R
d \A.

A consequence of Theorem TT is that all closed intervally thin sets are c-removable, but this fact does
not help us. In R

2 we were able to find a sufficient condition more general than interval thinness which
covers also the case of our set K:

Proposition 1. Let K ⊂ R
2 be compact and intervally thin in two different directions. Assume that for a

dense set of line segments L ⊂ R
2 the cardinality of K ∩ L is at most countable. Then K is c-removable.

Here interval thinness of K in a direction means that to any given line segment in that direction we can
find arbitrarily close line segments contained in the complement of the set K. It is not difficult to see that
for any closed set K intervally thin in a direction v, any continuous function which is locally convex outside
K is necessarily convex on all lines parallel to v. Hence, the assumption of interval thinness of K in two
directions ensures that our function is convex in those two directions (i.e. is essentially separately convex)
which we can use further in the proof—the key Lemma 3.1 tells us that a separately convex function cannot
“have a concave angle” on any line.

The condition from the proposition may seem rather artificial, but it emerges quite naturally from our
method of the proof. What is more, it is easily seen to be more general than interval thinness and is fulfilled
by K. (Hence, the Holey Devil’s Staircase is c-removable.) However, we were not able to generalize this
condition to higher dimensions; instead, we used the geometric measure theory to obtain the following
theorem which in R

2 is strictly weaker than Proposition 1.
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