Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Topologized Hilbert spaces $\stackrel{\Leftrightarrow}{\sim}$

Chi-Keung Ng

Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China

ARTICLE INFO

Article history: Received 19 June 2013 Available online 1 April 2014 Submitted by D. Blecher

Keywords: Hilbert spaces Densely defined operators *-Algebras Banach *-algebras ABSTRACT

Let $\mathcal{H}_{\mathcal{P}}$ be a Hausdorff topological vector space with the underlying vector space \mathcal{H} being a Hilbert space such that \mathcal{P} is coarser than the norm topology. A densely defined \mathcal{P} - \mathcal{P} -continuous operator on \mathcal{H} is called \mathcal{P} -maximal if it has no non-trivial \mathcal{P} - \mathcal{P} -continuous extension, and it is said to be \mathcal{P} -adjointable if its adjoint is also \mathcal{P} - \mathcal{P} -continuous.

We show that if \mathcal{P} is locally convex, the collection $\mathfrak{M}^*_{\mathcal{P}}(\mathcal{H})$ of all densely defined \mathcal{P} -maximal \mathcal{P} -adjointable operators is a *-algebra under the multiplication given by the \mathcal{P} -maximal extension of the composition and the involution \diamond given by the \mathcal{P} -maximal extension of the adjoint. Examples include rigged Hilbert spaces and O^* -algebras.

In the general (not necessarily locally convex) case, we associate with $\mathcal{H}_{\mathcal{P}}$ a *-algebra $\mathfrak{L}^{*}_{\mathbf{b}}(\mathcal{H}_{\mathcal{P}})$ which is a *-subalgebra of $\mathfrak{M}^{*}_{\mathcal{P}}(\mathcal{H})$ when \mathcal{P} is locally convex. If \mathcal{P} is the measure topology on \mathcal{H} corresponding to a tracial von Neumann algebra $\mathcal{M} \subseteq \mathfrak{L}(\mathcal{H})$, then the image of the representation of the measurable operator algebra on the completion $\mathcal{H}_{\mathcal{P}}$ of \mathcal{H} with respect to \mathcal{P} , can be regarded as a *-subalgebra of $\mathfrak{L}^{*}_{\mathbf{b}}(\mathcal{H}_{\mathcal{P}})$. In the case when \mathcal{P} is normable, it is shown that $\mathfrak{L}^{*}_{\mathbf{b}}(\mathcal{H}_{\mathcal{P}})$ is a Banach *-algebra. Examples of such Banach *-algebras include $\mathfrak{L}^{*}_{L_{\infty}[0,1]}(L_{2}[0,1]) := \{\Psi \in \mathfrak{B}(L_{2}[0,1]): \Psi(L_{\infty}[0,1]) \subseteq L_{\infty}[0,1] \} \subseteq L_{\infty}[0,1] \} \subseteq L_{\infty}[0,1] \} \subseteq L_{\infty}[0,1] \} \subseteq \mathcal{L}_{\infty}[0,1] \} \subseteq \mathcal{L}_{\infty}[0,1] \} \subseteq \mathfrak{L}_{\infty}[0,1] \}$, where $\mathfrak{S}(\ell^{2})$ and $\mathfrak{T}(\ell^{2})$ are the spaces of Hilbert–Schmidt operators and of trace-class operators respectively, on ℓ^{2} .

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

It is an interesting question of when a collection of densely defined operators on a Hilbert space forms a *-algebra. In the literature, there is the notion of O^* -algebra (see e.g. [2] or [9]) that roughly speaking concerns operators with their domains (as well as those of their adjoints) containing a fixed dense subspace of \mathcal{H} .

Motivated by the construction in [5], we consider another approach here. We equip a Hilbert space \mathcal{H} with a Hausdorff vector topology \mathcal{P} that is coarser than the original topology. We say that a densely defined \mathcal{P} -continuous operator $S : \operatorname{dom} S \to \mathcal{H}$ is " \mathcal{P} -maximal" if S is the only \mathcal{P} -continuous operator extending S.

http://dx.doi.org/10.1016/j.jmaa.2014.03.073 0022-247X/© 2014 Elsevier Inc. All rights reserved.

^{*} This work is supported by the National Natural Science Foundation of China (11071126). E-mail address: ckng@nankai.edu.cn.

Moreover, S is said to be "P-adjointable" if its adjoint S^* is also P-continuous. If $\mathfrak{M}^*_{\mathcal{P}}(\mathcal{H})$ is the collection of all P-maximal P-adjointable operators, then any densely defined P-adjointable P-continuous operator can be extended uniquely to an element in $\mathfrak{M}^*_{\mathcal{P}}(\mathcal{H})$.

Suppose that \mathcal{P} is locally convex. For any densely defined operators S and T, we set S + T to be the sum with domain dom $S \cap$ dom T and $S \circ T$ to be the composition with domain $T^{-1}(\operatorname{dom} S)$. If $S, T \in \mathfrak{M}^{\star}_{\mathcal{P}}(\mathcal{H})$, we will show that both S + T and $S \circ T$ are densely defined and their \mathcal{P} -maximal extensions lie in $\mathfrak{M}^{\star}_{\mathcal{P}}(\mathcal{H})$. Furthermore, the \mathcal{P} -maximal extension, S^{\diamond} , of the adjoint S^{*} (which will be densely defined in this case) is also in $\mathfrak{M}^{\star}_{\mathcal{P}}(\mathcal{H})$. These give a *-algebra structure on $\mathfrak{M}^{\star}_{\mathcal{P}}(\mathcal{H})$ (see Theorem 2.6). For any $S \in \mathfrak{M}^{\star}_{\mathcal{P}}(\mathcal{H})$, the relation $S^{\diamond} = S$ is the same as $S^{*} \subseteq S$. If $\mathfrak{M}^{\star}_{\mathcal{P}}(\mathcal{H})_{h} = \{S \in \mathfrak{M}^{\star}_{\mathcal{P}}(\mathcal{H}): S^{\diamond} = S\}$, there is a canonical generating cone $\mathfrak{M}^{\star}_{\mathcal{P}}(\mathcal{H})_{+}$ of $\mathfrak{M}^{\star}_{\mathcal{P}}(\mathcal{H})_{h}$ containing the identity map $I_{\mathcal{H}}$ such that $RSR^{\diamond} \in \mathfrak{M}^{\star}_{\mathcal{P}}(\mathcal{H})_{+}$ for every $S \in \mathfrak{M}^{\star}_{\mathcal{P}}(\mathcal{H})_{+}$ as well as $R \in \mathfrak{M}^{\star}_{\mathcal{P}}(\mathcal{H})$.

In Section 3, we will give several examples of such *-algebras. First of all, the concrete example of ℓ^2 equipped with the topology \mathcal{P} induced by the ℓ^{∞} -norm will be investigated (in Example 3.6). Moreover, if $K \subseteq \mathcal{H}$ is any norm-dense subspace, one can define a topology \mathcal{P}_K on \mathcal{H} such that $\mathfrak{M}^*_{\mathcal{P}_K}(\mathcal{H})$ is the largest O^* -algebra on K (see e.g. [9, Proposition 2.1.8]). Furthermore, if \mathcal{A} is an O^* -algebra on K, and $\mathfrak{t}_{\mathcal{A}}$ is the corresponding graph topology, there exists a topology \mathcal{P} on \mathcal{H} that is coarser than the norm topology and is compatible with $\mathfrak{t}_{\mathcal{A}}$ such that \mathcal{A} can be regarded as a *-subalgebra of $\mathfrak{M}^*_{\mathcal{P}}(\mathcal{H})$.

In the case of general vector topology \mathcal{P} (i.e. not necessarily locally convex), one can also associate with it a *-algebra $\mathfrak{L}^{\star}_{\mathbf{s}}(\mathcal{H}_{\mathcal{P}})$ by considering the closure of the *-algebra $\mathfrak{B}^{\star}_{\mathcal{P}}(\mathcal{H})$ (see (1.1)) in some semi-topological *-algebra. If \mathcal{P} happens to be locally convex, then $\mathfrak{L}^{\star}_{\mathbf{s}}(\mathcal{H}_{\mathcal{P}})$ can be regarded a *-subalgebra of $\mathfrak{M}^{\star}_{\mathcal{P}}(\mathcal{H})$ (Theorem 4.1). In the case when \mathcal{P} is the measure topology associated with a tracial von Neumann algebra \mathcal{M} on \mathcal{H} , the completion of \mathcal{M} under the measure topology can be regarded as a *-subalgebra of $\mathfrak{L}^{\star}_{\mathbf{s}}(\mathcal{H}_{\mathcal{P}})$.

We will also look at the situation when \mathcal{P} is normable in Section 5. In this case, a certain *-subalgebra $\mathfrak{L}^{\star}_{\mathbf{b}}(\tilde{\mathcal{H}_{\mathcal{P}}})$ of $\mathfrak{L}^{\star}_{\mathbf{s}}(\tilde{\mathcal{H}_{\mathcal{P}}})$ is actually a Banach *-algebra. If it happens that the norm topology on \mathcal{H} is an interpolation between the completion of $\mathcal{H}_{\mathcal{P}}$ and the dual norm on the dual space of $\mathcal{H}_{\mathcal{P}}$ (which can be regarded as a subspace of \mathcal{H}), then $\mathfrak{B}^{\star}_{\mathcal{P}}(\mathcal{H}) = \mathfrak{L}^{\star}_{\mathbf{b}}(\tilde{\mathcal{H}_{\mathcal{P}}}) = \mathfrak{M}^{\star}_{\mathcal{P}}(\mathcal{H})$ (Proposition 5.1). In particular, this situation happens when \mathcal{H} is the GNS construction of a faithful normal state ϕ of a von Neumann algebra \mathcal{M} and \mathcal{P} is the topology defined by the natural embedding of \mathcal{H} into the predual \mathcal{M}_{\star} through ϕ (Corollary 5.3). Examples also include $\mathfrak{L}^{\star}_{\mathfrak{T}(\ell^2)}(\mathfrak{S}(\ell^2))$ and $\mathfrak{L}^{\star}_{L_{\infty}[0,1]}(L_2[0,1])$ as in the abstract. In [4], we will show that any derivation on $\mathfrak{M}^{\star}_{\mathcal{P}}(\mathcal{H})$ is automatically continuous and is inner, when \mathcal{P} is normable.

Notation 1.1. All vector spaces are over the complex field. We denote by L(X) the set of all linear maps from a vector space X to itself. If $X_{\mathcal{P}}$ is a Hausdorff topological vector space, we denote by $(X_{\mathcal{P}})'$ (or $X'_{\mathcal{P}}$) and $\mathfrak{L}(X_{\mathcal{P}})$ the set of all \mathcal{P} -continuous linear functionals on X and the set of all \mathcal{P} - \mathcal{P} -continuous linear maps from X to X, respectively. We also denote by $X_{\mathcal{P}}$ the completion of $X_{\mathcal{P}}$, equipped with the topology induced by \mathcal{P} (again denoted by \mathcal{P}). If \mathcal{P} is defined by a norm $\|\cdot\|$, we will also write $X_{\|\cdot\|}$ for $X_{\mathcal{P}}$. If \mathcal{H} is a Hilbert space, we use $\mathfrak{B}(\mathcal{H})$ to denote the collection of bounded linear maps from \mathcal{H} to \mathcal{H} . Furthermore, if $R: \operatorname{dom} R \to \mathcal{H}$ is a densely defined operator on \mathcal{H} , we denote by R^* the adjoint of R.

Definition 1.2. $(\mathcal{H}, \mathcal{P})$ is called a *topologized Hilbert space* if $\mathcal{H}_{\mathcal{P}}$ is a Hausdorff topological vector space with \mathcal{H} being a Hilbert space such that \mathcal{P} is coarser than the topology induced by the inner product. In this case, we set

$$\mathfrak{B}^{\star}_{\mathfrak{P}}(\mathfrak{H}) := \{ R \in \mathfrak{B}(\mathfrak{H}) \colon R \text{ and } R^* \text{ are } \mathcal{P}\text{-continuous} \}.$$

$$(1.1)$$

A topologized Hilbert space $(\mathcal{H}, \mathcal{P})$ is said to be *metrizable* (respectively, *locally convex*) if \mathcal{P} is metrizable (respectively, locally convex). On the other hand, if $\mathcal{H}'_{\mathcal{P}}$ separates points of \mathcal{H} , we say that $(\mathcal{H}, \mathcal{P})$ is *separated*.

It is clear that if $(\mathcal{H}, \mathcal{P})$ is locally convex, then it is separated.

Download English Version:

https://daneshyari.com/en/article/4615907

Download Persian Version:

https://daneshyari.com/article/4615907

Daneshyari.com