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This paper is concerned with the traveling wave solutions in a diffusive system with
two preys and one predator. By constructing upper and lower solutions, the existence
of nontrivial traveling wave solutions is established. The asymptotic behavior of
traveling wave solutions is also confirmed by combining the asymptotic spreading
with the contracting rectangles. Applying the theory of asymptotic spreading, the
nonexistence of traveling wave solutions is proved.
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1. Introduction

In population dynamics, different predator–prey systems have been proposed to model different pro-
cesses of energy transmission since Lotka [28] and Volterra [37]. To illustrate and predict some ecological
phenomena, much attention has been paid to the dynamics of different predator–prey systems. In particular,
to model spatial–temporal behavior of predator and prey, a useful tool is the traveling wave solutions. In
the past decades, the existence of traveling wave solutions of two species predator–prey systems has been
studied by many researchers, we refer to Dunbar [4–6], Gardner and Smoller [11], Gardner and Jones [10],
Gardner [9], Huang et al. [15], Huang [14], Hsu et al. [12], Liang et al. [19], Lin et al. [27], Mischaikow and
Reineck [30], Owen and Lewis [32], Wang et al. [38] and references cited therein.

In realistic population communities, there are often several kinds of food and the predator has a choice
on which species to feed upon. To model the phenomena, coupled systems containing n > 2 equations
are needed in population dynamics. Freedman and Waltman [8] established predator-mediated coexistence
in a Lotka–Volterra ODE model for two competing species that are preyed upon by a common predator.
Cantrell et al. [3] established permanence in the corresponding reaction–diffusion system via the Acyclicity
Theorem when the underlying bounded habitat is taken to have an absorbing or a lethal boundary. In this
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paper, we further study the corresponding spatial–temporal patterns by traveling wave solutions. Namely,
we shall consider the traveling wave solutions of the following reaction–diffusion system (see Cantrell et al. [3]
and Cantrell and Cosner [2])⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂u1(x, t)
∂t

= d1Δu1(x, t) + u1(x, t)
[
a1 − u1(x, t) − c12u2(x, t) − c13u3(x, t)

]
,

∂u2(x, t)
∂t

= d2Δu2(x, t) + u2(x, t)
[
a2 − c21u1(x, t) − u2(x, t) − c23u3(x, t)

]
,

∂u3(x, t)
∂t

= d3Δu3(x, t) + u3(x, t)
[
a3 + c31u1(x, t) + c32u2(x, t) − u3(x, t)

]
,

(1.1)

in which x ∈ R, t > 0, and all the parameters except a3 are positive, here, a3 may be positive or negative.
When a3 > 0, the predator species is a generalist with resources other than the species u1 and u2 in (1.1);
while a3 < 0, the predator species has no other resources besides the species u1 and u2 in (1.1) (see Cantrell
et al. [3] and Cantrell and Cosner [2]).

In what follows, we assume that a3 > 0, then (1.1) equals to the following system⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u1(x, t)
∂t

= d1Δu1(x, t) + r1u1(x, t)
[
1 − u1(x, t) − a12u2(x, t) − a13u3(x, t)

]
,

∂u2(x, t)
∂t

= d2Δu2(x, t) + r2u2(x, t)
[
1 − a21u1(x, t) − u2(x, t) − a23u3(x, t)

]
,

∂u3(x, t)
∂t

= d3Δu3(x, t) + r3u3(x, t)
[
1 + a31u1(x, t) + a32u2(x, t) − u3(x, t)

]
,

(1.2)

in which

ri > 0, di > 0, aij � 0, i, j = 1, 2, 3, i �= j.

It is obvious that (1.2) has a trivial steady state 0 = (0, 0, 0), and when

a12 + a13(1 + a31 + a32) < 1, a21 + a23(1 + a31 + a32) < 1, (1.3)

(1.2) has a unique positive steady state K = (k1, k2, k3) defined by

k1 = a13a32 − a12a23 − a23a32 + a12 + a13 − 1
a12a23a31 + a13a32a21 + a12a21 − a13a31 − a23a32 − 1 ,

k2 = a23a31 − a21a13 − a13a31 + a21 + a23 − 1
a12a23a31 + a13a32a21 + a12a21 − a13a31 − a23a32 − 1 ,

k3 = a12a21 + a31a12 + a32a21 − a31 − a32 − 1
a12a23a31 + a13a32a21 + a12a21 − a13a31 − a23a32 − 1 .

For convenience, we first introduce the following definition of traveling wave solutions.

Definition 1.1. A traveling wave solution of (1.2) is a special solution of the form u(x, t) = Φ(x + ct),
where u = (u1, u2, u3) and Φ = (φ1, φ2, φ3) ∈ C2(R,R3) is the wave profile that propagates through the
one-dimension spatial domain R at the constant wave speed c > 0.

Substituting u(x, t) = Φ(x + ct) into (1.2) and denoting x + ct as ξ, then (1.2) has a traveling wave
solution Φ if and only if Φ is the solution of the following system

⎧⎪⎨
⎪⎩

d1φ
′′
1(ξ) − cφ′

1(ξ) + r1φ1(ξ)
[
1 − φ1(ξ) − a12φ2(ξ) − a13φ3(ξ)

]
= 0,

d2φ
′′
2(ξ) − cφ′

2(ξ) + r2φ2(ξ)
[
1 − a21φ1(ξ) − φ2(ξ) − a23φ3(ξ)

]
= 0,

d3φ
′′
3(ξ) − cφ′

3(ξ) + r3φ3(ξ)
[
1 + a31φ1(ξ) + a32φ2(ξ) − φ3(ξ)

]
= 0.

(1.4)
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