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We say that a complex number λ is an extended eigenvalue of a bounded linear
operator T on a Hilbert space H if there exists a nonzero bounded linear operator X
acting on H, called extended eigenvector associated to λ, and satisfying the equation
TX = λXT . In this paper we describe the sets of extended eigenvalues and extended
eigenvectors for the product of a positive and a self-adjoint operator which are both
injective. We also treat the case of normal operators.

© 2014 Published by Elsevier Inc.

1. Introduction and preliminaries

Let H be a separable complex Hilbert space, and denote by L(H) the algebra of all bounded linear
operators on H. If T is an operator in L(H), then a complex number λ is an extended eigenvalue of T if
there is a nonzero operator X such that TX = λXT . We denote by the symbol σext(T ) the set of extended
eigenvalues of T . The set of all extended eigenvectors corresponding to λ will be denoted by Eext(λ).

The concepts of extended eigenvalue and extended eigenvector are closely related to generalization of
famous Lomonosov’s theorem on existence of non-trivial hyperinvariant subspace for the compact operators
on a Banach space, which was done by S. Brown in [4], and Kim, Moore and Pearcy in [7], and is stated as
follows:

If an operator T on a Banach space has a non-zero compact eigenvector, then T has a nontrivial hyper-
invariant subspace.

The special case, where T commutes with a non-zero compact operator, is the original theorem of
Lomonosov [9].

Extended eigenvalues and their corresponding extended eigenvectors were studied by several authors (see
for example [1,3,6,8]).
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In [3], Biswas, Lambert and Petrovic have introduced this notion and they have shown that σext(V ) =
]0,+∞[ where V is the well-known integral Volterra operator on the space L2[0, 1].

Recently, in [13], Shkarin has shown that there is a compact quasinilpotent operator T for which σext(T ) =
{1}, that which allows to classify this type of operators. In [6], Karaev gave a complete description of the set
of extended eigenvectors of V . Moreover, in [10] and [11], Malamud had given the set of extended eigenvectors
of some generalized Volterra operators (see [5] for more information about this class of operators).

In this paper we treat a large class of operators, that is the normal operators.
Section 2 introduces the sets of extended eigenvalues and extended eigenvectors for the product of a

positive operator by a self-adjoint operator which are both injective. As a consequence, we obtain a char-
acterization of the last sets for an injective self-adjoint operator in terms of its spectral measure. We also
give two applications of important classes of injective self-adjoint operators.

Section 3 is dedicated to the normal operators. We generalize our results on the self-adjoint operators to
the normal operators case.

Let T ∈ L(H), and let σ(T ), σp(T ) and σc(T ) denote the spectrum, the point and the continuous spectrum
of T respectively. Using a theorem of Rosenblum [12], it was established in [2] that

σext(T ) ⊂
{
λ ∈ C: σ(T ) ∩ σ(λT ) �= ∅

}
. (1.1)

It is known that for any self-adjoint operator T ∈ L(H), σ(T ) ⊂ R and σ(T ) = σp(T )∪ σc(T ). Obviously, if
T is a non-injective self-adjoint operator, then σext(T ) = C. Indeed, for all λ ∈ C, one can take X being a
nonzero operator from the kernel of T to itself. In addition, if σ(T ) ⊂ R

∗ then by (1.1) σext(T ) ⊂ R. Indeed,
σ(λT ) = {λt: t ∈ σ(T )}. Consequently, σ(T ) ∩ σ(λT ) = ∅ for all λ ∈ C\R∗.

So, we are interested in the case when T is an injective non-invertible self-adjoint operator, i.e., 0 ∈ σc(T ).

2. Product of self-adjoint operators

In this section, we characterize the sets of extended eigenvalues and extended eigenvectors of the product
of a positive and a self-adjoint operator which are both injective. First we will show some auxiliary results.

Lemma 2.1. Let R ∈ L(H) be a self-adjoint operator, and let a > ‖R‖. Then for any p ∈ C[X] we have,

〈
p(R)x, y

〉
= p(a)〈x, y〉 −

aˆ

−a

p′(t)
〈
E(]−∞, t])x, y

〉
dt, ∀x, y ∈ H,

where 〈 , 〉 denotes the standard inner product in H, and E denotes the spectral measure associated to R. In
particular, if R is a positive operator, then

〈
p(R)x, y

〉
= p(a)〈x, y〉 −

aˆ

0

p′(t)
〈
E([0, t])x, y

〉
dt, ∀x, y ∈ H.

Proof. First, recall that the indicator function of a subset Ω ⊂ R is defined by

1Ω(t) =
{

1 if t ∈ Ω,

0 otherwise.

Hence
aˆ

−a

p′(t)
〈
E(]−∞, t])x, y

〉
dt =

ˆ

R

1[−a,a](t)p′(t)
( aˆ

−a

1]−∞,t](s) dEx,y(s)
)
dt
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