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For 0 < p < ∞, the Dirichlet-type space Dp
p−1 consists of the analytic functions f in

the unit disc D such that
∫
D
|f ′(z)|p(1 − |z|)p−1 dA(z) < ∞. Motivated by operator

theoretic differences between the Hardy space Hp and Dp
p−1, the integral operator

Tg(f)(z) =
z∫

0

f(ζ)g′(ζ) dζ, z ∈ D,

acting from one of these spaces to another is studied. In particular, it is shown,
on one hand, that Tg : Dp

p−1 → Hp is bounded if and only if g ∈ BMOA when
0 < p � 2, and, on the other hand, that this equivalence is very far from being true
if p > 2. Those symbols g such that Tg : Dp

p−1 → Hq is bounded (or compact) when
p < q are also characterized. Moreover, the best known sufficient L∞-type condition
for a positive Borel measure μ on D to be a p-Carleson measure for Dp

p−1, p > 2,
is significantly relaxed, and the established result is shown to be sharp in a very
strong sense.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction and main results

Let H(D) denote the algebra of all analytic functions in the unit disc D = {z: |z| < 1} of the complex
plane C. Let T be the boundary of D. The Carleson square associated with an interval I ⊂ T is the set
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S(I) = {reit: eit ∈ I, 1−|I| � r < 1}, where |E| denotes the normalized Lebesgue measure of the set E ⊂ T.
For our purposes it is also convenient to define for each a ∈ D \ {0} the interval Ia = {eiθ: | arg(ae−iθ)| �
π(1−|a|)}, and denote S(a) = S(Ia). For 0 < p � ∞, the Hardy space Hp consists of the functions f ∈ H(D)
for which

‖f‖Hp = lim
r→1−

Mp(r, f) < ∞,

where

Mp(r, f) =
(

1
2π

2π∫
0

∣∣f(reiθ)∣∣p dθ
) 1

p

, 0 < p < ∞,

and

M∞(r, f) = max
0�θ�2π

∣∣f(reiθ)∣∣.
For the theory of the Hardy spaces, see [9,12].

For 0 < p < ∞ and −1 < α < ∞, the Dirichlet space Dp
α consists of all f ∈ H(D) such that

‖f‖pDp
α

=
∫
D

∣∣f ′(z)
∣∣p(1 − |z|2

)α
dA(z) +

∣∣f(0)
∣∣p < ∞,

where dA(z) = dx dy
π is the normalized Lebesgue area measure on D.

The purpose of this study is to underline operator theoretic differences between the closely related spaces
Dp

p−1 and Hp. Before going to that, it is appropriate to recall inclusion relations between these spaces. The
classical Littlewood–Paley formula implies D2

1 = H2. Moreover, it is well known [10,17] that

Dp
p−1 � Hp, 0 < p < 2, (1.1)

and

Hp � Dp
p−1, 2 < p < ∞. (1.2)

It is also worth mentioning that there are no inclusion relations between Dp
p−1 and Dq

q−1 when p �= q [14].
A natural way to illustrate differences between two given spaces is to consider classical operators acting

on them. For example, if 0 < p < 2, then the behavior of the composition operator Cϕ(f) = f ◦ ϕ reveals
that Dp

p−1 is in a sense a much smaller space than Hp. Namely, it follows from Littlewood’s subordination
theorem that Cϕ : Hp → Hp is bounded for each 0 < p < ∞ and all analytic self-maps ϕ of D, but in
contrast to this, there are symbols ϕ which induce unbounded operators Cϕ : Dp

p−1 → Dp
p−1 when 0 < p < 2

[8, Theorem 1.1(b)]. As in the case of Hardy spaces, any composition operator Cϕ : Dp
p−1 → Dp

p−1 is bounded
when 2 � p < ∞.

There are operators which do not distinguish between Dp
p−1 and Hp. For a given g ∈ H(D), the generalized

Hilbert operator Hg is defined by

Hg(f)(z) =
1∫

0

f(t)g′(tz) dt, (1.3)
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