Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Numerical range for random matrices

霐

Benoît Collins ^{a,b,c,1}, Piotr Gawron ^{d,2}, Alexander E. Litvak ^{e,*,3}, Karol Życzkowski ^{f,g,4}

^a Département de Mathématique et Statistique, Université d'Ottawa, 585 King Edward, Ottawa, ON, K1N6N5, Canada

^b WPI Advanced Institute for Materials Research, Tohoku University, Mathematics Unit, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan

^c CNRS, Institut Camille Jordan, Université Lyon 1, France

^d Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Baltycka 5, 44-100 Gliwice, Poland

^e Dept. of Math. and Stat. Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada

 $^{\rm f}$ Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Kraków, Poland

^g Center for Theoretical Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warszawa, Poland

A R T I C L E I N F O

Article history: Received 25 September 2013 Available online 31 March 2014 Submitted by J. Bastero

Keywords: Ginibre ensemble Gaussian random matrix GUE Numerical range Field of values Triangular random matrix

ABSTRACT

We analyze the numerical range of high-dimensional random matrices, obtaining limit results and corresponding quantitative estimates in the non-limit case. For a large class of random matrices their numerical range is shown to converge to a disc. In particular, numerical range of complex Ginibre matrix almost surely converges to the disk of radius $\sqrt{2}$. Since the spectrum of non-hermitian random matrices from the Ginibre ensemble lives asymptotically in a neighborhood of the unit disk, it follows that the outer belt of width $\sqrt{2} - 1$ containing no eigenvalues can be seen as a quantification the non-normality of the complex Ginibre random matrix. We also show that the numerical range of upper triangular Gaussian matrices converges to the same disk of radius $\sqrt{2}$, while all eigenvalues are equal to zero and we prove that the operator norm of such matrices converges to $\sqrt{2e}$.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we are interested in the numerical range of large random matrices. In general, the numerical range (also called the field of values) of an $N \times N$ matrix is defined as $W(X) = \{(Xy, y): ||y||_2 = 1\}$

* Corresponding author.

http://dx.doi.org/10.1016/j.jmaa.2014.03.072 0022-247X/© 2014 Elsevier Inc. All rights reserved.

E-mail addresses: bcollins@uottawa.ca (B. Collins), gawron@iitis.pl (P. Gawron), aelitvak@gmail.com (A.E. Litvak), karol@tatry.if.uj.edu.pl (K. Życzkowski).

¹ Research partially supported by ERA, NSERC discovery grant, and AIMR.

 $^{^2}$ Research partially supported by the Grant N N516 481840 financed by Polish National Centre of Science.

³ Research partially supported by the E.W.R. Steacie Memorial Fellowship.

 $^{^4}$ Research partially supported by the Grant DEC-2011/02/A/ST1/00119 financed by Polish National Centre of Science.

(see e.g. [18,22,24]). This notion was introduced almost a century ago and it is known by the celebrated Toeplitz-Hausdorff theorem [21,38] that W(X) is a compact convex set in \mathbb{C} . A common convention to denote the numerical range by W(X) goes back to the German term "Wertevorrat" used by Hausdorff.

For any $N \times N$ matrix X its numerical range W(X) clearly contains all its eigenvalues λ_i , $i \leq N$. If X is normal, that is $XX^* = X^*X$, then its numerical range is equal to the convex hull of its spectrum, $W(X) = \Gamma(X) := \operatorname{conv}(\lambda_1, \ldots, \lambda_N)$. The converse is valid if and only if $N \leq 4$ [32,23].

For a non-normal matrix X its numerical range is typically larger than $\Gamma(X)$ even in the case N = 2. For example, consider the Jordan matrix of order two,

$$J_2 = \begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix}$$

Then both eigenvalues of J_2 are equal to zero, while $W(J_2)$ forms a disk D(0, 1/2).

We shall now turn our attention to numerical range of random matrices. Let G_N be a complex random matrix of order N from the *Ginibre ensemble*, that is an $N \times N$ matrix with i.i.d. centered complex normal entries of variance 1/N. It is known that the limiting spectral distribution μ_N converges to the uniform distribution on the unit disk with probability one (cf. [5,15–17,36,37]). It is also known that the operator norm goes to 2 with probability one. This is directly related to the fact that the level density of the Wishart matrix $G_N G_N^*$ is asymptotically described by the Marchenko–Pastur law, supported on [0, 4], and the squared largest singular value of G_N goes to 4 ([19], see also [14] for the real case).

As the complex Ginibre matrix G_N is generically non-normal, the support Γ of its spectrum is typically smaller than the numerical range W. Our results imply that the ratio between the area of $W(G_N)$ and $\Gamma(G_N)$ converges to 2 with probability one. Moreover, in the case of strictly upper triangular matrix T_N with Gaussian entries (see below for precise definitions) we have that the area of $W(T_N)$ converges to 2, while clearly $\Gamma(T_N) = \{0\}$.

The numerical range of a matrix X of size N can be considered as a projection of the set of density matrices of size N,

$$Q_N = \{ \varrho: \ \varrho = \varrho^*, \ \varrho \ge 0, \ \mathrm{Tr} \ \varrho = 1 \},$$

onto a plane, where this projection is given by the (real) linear map $\rho \mapsto \text{Tr} \rho X$. More precisely, for any matrix X of size N there exists a real affine rank 2 projection P of the set Q_N , whose image is congruent to the numerical range W(X) [10].

Thus our results on numerical range of random matrices contribute to the understanding of the geometry of the convex set of quantum mixed states for large N.

Let d_H denote the Hausdorff distance. Our main result, Theorem 4.1, states the following:

If random matrices X_N of order N satisfy for every real θ

$$\lim_{N \to \infty} \left\| \operatorname{Re} \left(e^{i\theta} X_N \right) \right\| = R$$

then with probability one

$$\lim_{N \to \infty} d_H \big(W(X_N), D(0, R) \big) = 0.$$

We apply this theorem to a large class of random matrices. Namely, let $x_{i,i}$, $i \ge 1$, be i.i.d. complex random variables with finite second moment, $x_{i,j}$, $i \ne j$, be i.i.d. centered complex random variables with finite fourth moment, and all these variables are independent. Assume $\mathbb{E}|x_{1,2}|^2 = \lambda^2$ for some $\lambda > 0$. Let Download English Version:

https://daneshyari.com/en/article/4615931

Download Persian Version:

https://daneshyari.com/article/4615931

Daneshyari.com