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The Riemann solutions to the isentropic relativistic Euler system for Chaplygin gas with
a small parameter are considered. Unlike the polytropic or barotropic gas cases, we find
that firstly, as the parameter decreases to a certain critical number, the two-shock solution
converges to a delta shock wave solution of the same system. Moreover, as the parameter
goes to zero, that is, the pressure vanishes, the solution is nothing but the delta shock
wave solution to the zero-pressure relativistic Euler system. Meanwhile, the two-rarefaction
wave solution tends to the vacuum solution to the zero-pressure relativistic system, and
the solution containing one rarefaction wave and one shock wave tends to the contact
discontinuity solution to the zero-pressure relativistic system as pressure vanishes.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The isentropic relativistic Euler system reads [29]:
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(1.1)

which involves conservation laws of baryon numbers and momentum for isentropic perfect fluid in special relativity. Here
ρ and n represent the proper mass–energy density and the proper number density of baryons, respectively, p = p(ρ) is the
pressure, the constant c is the light speed, v is the particle speed in a chosen Lorenz frame satisfying the relativistic con-
straint v2 < c2. Moreover, the sonic speed

√
p′(ρ) should be not more than the light speed c. The number n is determined

by the first law of thermodynamics

θ dS = 1

n
dρ − ρ + p/c2

n2
dn,

where θ and S represent the temperature and the entropy per baryon, respectively. Thus, for isentropic fluid we have
dn/n = dρ/(ρ + p/c2), which yields
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n = k0 exp

( ρ∫
1

ds

s + p(s)/c2

)
, (1.2)

where k0 is a constant.
The Riemann problem for (1.1) was solved by Pant in [22] with the equation of state p = σ 2ρ , where σ is the sound

speed. He also constructed the global weak solution to Cauchy problem for (1.1) under the same equation of state. Li, Shi
and Wang [19] generalized the above results with a more general equation of state. We refer to [13,18] for some results
about entropy solutions and BV solutions to (1.1). For Chaplygin gas, Cheng and Yang [11] studied (1.1) and obtained the
Riemann solutions. In this case, the system is fully linearly degenerate and there appears concentration in solutions when
initial data belong to a certain domain in the phase plane. To be more precisely, there are five kinds of solutions, in which
four cases contain different discontinuities, while another case involves the so-called delta shock wave. This makes our
discussions later more interesting.

The system (1.1) in the Newtonian limit reduces to the classical isentropic Euler equations for compressible fluids:{
ρt + (ρv)x = 0,

(ρv)t + (
ρv2 + p

)
x = 0.

(1.3)

Thus (1.1) can be viewed as the relativistic generalization of (1.3). The Euler system (1.3) is the well-known example of a
hyperbolic system of conservation laws and has been widely studied. We can refer to [4] and references cited therein for
some known results about the Riemann problem to hyperbolic systems of conservation laws. Specially, Chang and Hsiao
[5] considered the Riemann problem and elementary wave interactions of (1.3) for polytropic gas. The solutions involving
constant states, rarefaction waves and shock waves were obtained constructively by the phase plane analysis method. For
Chaplygin gas, the Riemann solutions to (1.3) were obtained in [2], which involve the concentration phenomenon for certain
initial data. That is, the Riemann problem for Chaplygin gas has a unique solution which may include the so-called delta
shock wave in some cases. Recently, the Chaplygin gas dynamics has been widely studied and some interesting and impor-
tant results have been obtained, especially for the Riemann problem. For example, we refer to [9,10,14,16,23,30,31] for the
related results and the references cited therein.

As the pressure vanishes, (1.1) formally transforms into the following model⎧⎪⎪⎪⎨
⎪⎪⎪⎩
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(1.4)

called the zero-pressure relativistic Euler system. It can be viewed as a relativistic version of the transport equations{
ρt + (ρv)x = 0,

(ρv)t + (
ρv2)

x = 0,
(1.5)

which can be used to describe the motion process of free particles sticking under collision in the low temperature and the
information of large-scale structures in the universe [12,24]. The transport equations (1.5) have been investigated extensively
in the past two decades. The Riemann problem for (1.5) was solved in [1,27], in which the delta shock wave and vacuum
do occur. The delta shock wave is characterized by the location, propagation speed, and weight which is the mass of
concentrated particles. This shows that the delta shock can be regarded as the galaxies in the universe, or the concentration
of particles. We can also see [3,15,21,25,28] for the related results about the delta shock wave.

The method of vanishing pressure limit has been carried out to the Euler system for the isothermal case [17] and for
the isentropic case [7,8]. In [17], Li proved that when temperature drops to zero, the solution containing two shock waves
converges to the delta shock solution to the transport equations and the solution containing two rarefaction waves converges
to the solution involving vacuum to the transport equations. Instead of the isothermal case, Chen and Liu [7] considered the
formation of delta shock and a vacuum state of the Riemann solutions to the Euler system in which they took the equation
of state as P = εp for p = ργ /γ (γ > 1).

In [20], Mitrovic and Nedeljkov considered the generalized pressureless gas dynamics model with a scaled pressure term{
ρt + (

ρg(u)
)

x = 0,

(ρu)t + (
ρug(u) + εp(ρ)

)
x = 0,

(1.6)

where p = κργ for 1 < γ < 3 and g is a non-decreasing function. They extended the results in [7] to (1.6) and found that
the delta shock wave appears as the limit of the solutions involving two shock waves as ε goes to zero. Whereafter, Yin and
Sheng [32,33] extended the results in [17] and [7] to the Euler system of conservation laws of energy and momentum in
special relativity for both isothermal gas and polytropic gas. We also refer to [26] for the related results.



Download English Version:

https://daneshyari.com/en/article/4615938

Download Persian Version:

https://daneshyari.com/article/4615938

Daneshyari.com

https://daneshyari.com/en/article/4615938
https://daneshyari.com/article/4615938
https://daneshyari.com

