

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Normal criteria for families of meromorphic functions

Gerd Dethloff^a, Tran Van Tan^{b,*}, Nguyen Van Thin^c

- ^a Université de Brest, LMBA, UMR CNRS 6205, 6 avenue Le Gorgeu, C.S. 93837, 29238 Brest Cedex 3, France
- ^b Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy Street, Cau Giay, Hanoi, Viet Nam
- ^c Department of Mathematics, Thai Nguyen University of Education, Luong Ngoc Quyen Street, Thai Nguyen City, Viet Nam

ARTICLE INFO

Article history: Received 14 February 2013 Available online 8 October 2013 Submitted by L. Fialkow

Keywords: Meromorphic function Normal family Nevanlinna theory

ABSTRACT

By using the Nevanlinna theory, we prove some normality criteria for a family of meromorphic functions under a condition on differential polynomials generated by the members of the family.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let D be a domain in the complex plane $\mathbb C$ and $\mathcal F$ be a family of meromorphic functions in D. The family $\mathcal F$ is said to be normal in D, in the sense of Montel, if for any sequence $\{f_v\}\subset \mathcal F$, there exists a subsequence $\{f_{v_i}\}$ such that $\{f_{v_i}\}$ converges spherically locally uniformly in D, to a meromorphic function or ∞ .

In 1989, Schwick proved:

Theorem A. (See [7, Theorem 3.1].) Let k, n be positive integers such that $n \ge k + 3$. Let \mathcal{F} be a family of meromorphic functions in a complex domain D such that for every $f \in \mathcal{F}$, $(f^n)^{(k)}(z) \ne 1$ for all $z \in D$. Then \mathcal{F} is normal on D.

Theorem B. (See [7, Theorem 3.2].) Let k, n be positive integers such that $n \ge k + 1$. Let \mathcal{F} be a family of holomorphic functions in a complex domain D such that for every $f \in \mathcal{F}$, $(f^n)^{(k)}(z) \ne 1$ for all $z \in D$. Then \mathcal{F} is normal on D.

The following normality criterion was established by Pang and Zalcman [6] in 1999:

Theorem C. (See [6].) Let n and k be natural numbers and \mathcal{F} be a family of holomorphic functions in a domain D all of whose zeros have multiplicity at least k. Assume that $f^n f^{(k)} - 1$ is non-vanishing for each $f \in \mathcal{F}$. Then \mathcal{F} is normal in D.

The main purpose of this paper is to establish some normality criteria for the case of more general differential polynomials. Our main results are as follows:

E-mail addresses: gerd.dethloff@univ-brest.fr (G. Dethloff), tranvantanhn@yahoo.com (T.V. Tran), thinmath@gmail.com (T.V. Nguyen).

^{*} The second named author is currently Regular Associate Member of ICTP, Trieste, Italy. This research is funded by Viet Nam National Foundation for Science and Technology Development (NAFOSTED).

^{*} Corresponding author.

Theorem 1. Take q ($q \geqslant 1$) distinct nonzero complex values a_1, \ldots, a_q , and q positive integers (or $+\infty$) ℓ_1, \ldots, ℓ_q . Let n be a nonnegative integer, and let $n_1, \ldots, n_k, t_1, \ldots, t_k$ be positive integers $(k \geqslant 1)$. Let \mathcal{F} be a family of meromorphic functions in a complex domain D such that for every $f \in \mathcal{F}$ and for every $m \in \{1, \dots, q\}$, all zeros of $f^n(f^{n_1})^{(t_1)} \cdots (f^{n_k})^{(t_k)} - a_m$ have multiplicity at least ℓ_m . Assume that

(a)
$$n_j \geqslant t_j$$
 for all $1 \leqslant j \leqslant k$, and $\ell_i \geqslant 2$ for all $1 \leqslant i \leqslant q$,

(b)
$$\sum_{i=1}^{q} \frac{1}{\ell_i} < \frac{qn-2+\sum_{j=1}^{k} q(n_j-t_j)}{n+\sum_{j=1}^{k} (n_j+t_j)}$$
.

Then \mathcal{F} is a normal family.

Take q = 1 and $\ell_1 = +\infty$, we get the following corollary of Theorem 1:

Corollary 2. Let a be a nonzero complex value, let n be a nonnegative integer, and $n_1, \ldots, n_k, t_1, \ldots, t_k$ be positive integers. Let \mathcal{F} be a family of meromorphic functions in a complex domain D such that for every $f \in \mathcal{F}$, $f^n(f^{n_1})^{(t_1)} \cdots (f^{n_k})^{(t_k)} - a$ is nowhere vanishing on D. Assume that

(a)
$$n_i \geqslant t_i$$
 for all $1 \leqslant i \leqslant k$,

(a)
$$n_j \ge t_j$$
 for all $1 \le j \le k$,
(b) $n + \sum_{j=1}^k n_j \ge 3 + \sum_{j=1}^k t_j$.

Then \mathcal{F} is normal on D.

We remark that in the case where $n \ge 3$, condition (a) in the above corollary implies condition (b); and in the case where n = 0 and k = 1, Corollary 2 gives Theorem A.

For the case of holomorphic functions, we shall prove the following result:

Theorem 3. Take q ($q \ge 1$) distinct nonzero complex values a_1, \ldots, a_q , and q positive integers (or $+\infty$) ℓ_1, \ldots, ℓ_q . Let n be a nonnegative integer, and let $n_1, \ldots, n_k, t_1, \ldots, t_k$ be positive integers $(k \ge 1)$. Let \mathcal{F} be a family of holomorphic functions in a complex domain D such that for every $f \in \mathcal{F}$ and for every $m \in \{1, \dots, q\}$, all zeros of $f^n(f^{n_1})^{(t_1)} \cdots (f^{n_k})^{(t_k)} - a_m$ have multiplicity at least ℓ_m . Assume that

(a)
$$n_i \geqslant t_i$$
 for all $1 \leqslant i \leqslant k$, and $\ell_i \geqslant 2$ for all $1 \leqslant i \leqslant q$.

$$\begin{array}{l} \text{(a)} \ n_j \geqslant t_j \ \textit{for all} \ 1 \leqslant j \leqslant \textit{k, and} \ \ell_i \geqslant 2 \ \textit{for all} \ 1 \leqslant i \leqslant \textit{q,} \\ \text{(b)} \ \sum_{i=1}^q \frac{1}{\ell_i} < \frac{qn-1+\sum_{j=1}^k q(n_j-t_j)}{n+\sum_{i=1}^k n_j}. \end{array}$$

Then \mathcal{F} is a normal family.

Take q = 1 and $\ell_1 = +\infty$, Theorem 3 gives the following generalization of Theorem B, except for the case n = k + 1. So for the latter case, we add a new proof of Theorem B in Appendix A which is slightly simpler than the original one.

Corollary 4. Let a be a nonzero complex value, let n be a nonnegative integer, and $n_1, \ldots, n_k, t_1, \ldots, t_k$ be positive integers. Let \mathcal{F} be a family of holomorphic functions in a complex domain D such that for every $f \in \mathcal{F}$, $f^n(f^{n_1})^{(t_1)} \cdots (f^{n_k})^{(t_k)} - a$ is nowhere vanishing on D. Assume that

(a)
$$n_i \geqslant t_i$$
 for all $1 \leqslant j \leqslant k$,

(a)
$$n_j \geqslant t_j$$
 for all $1 \leqslant j \leqslant k$,
(b) $n + \sum_{j=1}^k n_j \geqslant 2 + \sum_{j=1}^k t_j$.

Then \mathcal{F} is normal on D.

In the case where $n \ge 2$, condition (a) in the above corollary implies condition (b).

Remark 5. Our above results remain valid if the monomial $f^n(f^{n_1})^{(t_1)} \cdots (f^{n_k})^{(t_k)}$ is replaced by the following polynomial

$$f^{n}(f^{n_{1}})^{(t_{1})}\cdots(f^{n_{k}})^{(t_{k})}+\sum_{I}c_{I}f^{n_{I}}(f^{n_{1I}})^{(t_{1I})}\cdots(f^{n_{kI}})^{(t_{kI})},$$

where c_I is a holomorphic function on D, and n_I , n_{II} , t_{II} are nonnegative integers satisfying

$$\alpha_I := \frac{\sum_{j=1} t_{jI}}{n_I + \sum_{j=1}^k n_{jI}} < \alpha := \frac{\sum_{j=1} t_j}{n + \sum_{j=1}^k n_j}.$$

Download English Version:

https://daneshyari.com/en/article/4615951

Download Persian Version:

https://daneshyari.com/article/4615951

<u>Daneshyari.com</u>