

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Iteration of self-maps on a product of Hilbert balls

Cho-Ho Chu*, Michael Rigby

School of Mathematical Sciences, Queen Mary, University of London, London E1 4NS, UK

ARTICLE INFO

Article history: Received 26 June 2013 Available online 14 October 2013 Submitted by J.D.M. Wright

Keywords: Iteration Hilbert ball Polydisc Kobayashi distance JB*-triple

ABSTRACT

Let $D=D_1\times\cdots\times D_p$ be a product of Hilbert balls, with coordinate maps $\pi_j:\overline{D}\to\overline{D}_j$ on the closure \overline{D} , for $j=1,\ldots,p$. Let f be a fixed-point free self-map on D, which is nonexpansive in the Kobayashi distance, and compact for $p\geqslant 2$. We describe the horospheres invariant under f and show that there exist a boundary point (ξ_1,\ldots,ξ_p) of D and a nonempty set $J\subset\{1,\ldots,p\}$ such that each limit function h of the iterates (f^n) satisfies $\xi_j\in\overline{\pi_j\circ h(D)}$ for all $j\in J$ and $\pi_j\circ h(\cdot)=\xi_j$ whenever $\pi_j\circ h(D)$ meets the boundary of D_j . For a single Hilbert ball D_1 , either $\liminf_{n\to\infty}\|f^{2n}(0)\|<1$ or (f^n) converges locally uniformly to a constant map taking value at the boundary of D_1 .

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Iteration of holomorphic maps on a Hilbert ball has been widely studied (see, for example, [2,3,6,10,12,17,18,20,22]). In infinite dimension, several authors [6,13,17] have studied iteration of compact holomorphic maps to which most finite dimensional results, including the Denjoy-Wolff theorem for the unit disc, can be extended. In this paper, we study iteration of a self-map f on a cartesian product $D = D_1 \times \cdots \times D_p$ of Hilbert balls, which is nonexpansive in the Kobayashi distance, and compact if $p \ge 2$. If f does not have a fixed point in D, we first give an explicit description in Proposition 2.4 of the f-invariant horospheres at a boundary point $\xi = (\xi_1, \dots, \xi_p)$ of D. We then use this to show in Theorem 3.2 that there is a nonempty set $J \subset \{1, ..., p\}$ such that each *limit function h* of the iterates (f^n) satisfies $\xi_j \in \overline{\pi_j \circ h(D)}$ for all $j \in J$ and $\pi_j \circ h(\cdot) = \xi_j$ whenever $\pi_j \circ h(D)$ meets the boundary of D_j , where π_j is the coordinate map $(x_1, \dots, x_p) \in \overline{D} \mapsto x_j \in \overline{D}_j$, and a limit function h is a subsequential limit of (f^n) (cf. Definition 3.1). This generalises the results in [1,11] for the polydiscs and unifies the iteration results for a single Hilbert ball. Indeed, if $D = D_1$ is a single Hilbert ball, then the result states that $h(\cdot) = \xi_1$ for each limit function h of (f^n) having a value in the boundary of D_1 . In general, h can have values inside D_1 even if f is biholomorphic (cf. [22]). However, if D_1 is finite dimensional or if f is compact, then all limit functions of (f^n) have values in the boundary of D_1 and hence they are identical to the constant map $h(\cdot) = \xi_1$. It follows that (f^n) converges locally uniformly to h, which is the generalised Denjoy-Wolff theorem proved in [6,12,17,18]. Without compactness condition on f, the Denjoy-Wolff theorem may fail for infinite dimensional Hilbert balls. Nevertheless, compactness is not a necessary condition for the Denjoy-Wolff theorem to hold. For a self-map f, nonexpansive in the Kobayashi distance on a single Hilbert ball D_1 , we give necessary and sufficient conditions in Corollary 3.6 for the Denjoy-Wolff theorem to hold. In particular, we show that either $\liminf_{n\to\infty} \|f^{2n}(0)\| < 1$ or (f^n) converges locally uniformly to a constant map $h(\cdot) = \xi_1$ with $\|\xi_1\| = 1$. This improves and simplifies the results in [6,17] for compact maps, as well as giving some perspective of the failure of the Denjoy-Wolff theorem in the example of [22]. We also show that, if a fixed-point free self-map f contracts the Kobayashi distance in D_1 , then the existence of a totally bounded orbit $(f^n(x_1))$ is sufficient (and necessary) for the Denjoy-Wolff theorem to hold.

E-mail addresses: c.chu@qmul.ac.uk (C.-H. Chu), j.m.rigby@qmul.ac.uk (M. Rigby).

^{*} Corresponding author.

Besides the Kobayashi metric, we make use of the Jordan algebraic structure of the ambient space of D, which is a JB*-triple. Especially, we use the Bergmann operator to describe the invariant horospheres, alternative to the ones given in [1] for polydiscs and other domains, but well suited for D and providing a generalised version of Wolff's theorem for the unit disc in \mathbb{C} . To prove Theorem 3.2, we determine the intersection of a horosphere with the boundary of D which, unlike the case of a single Hilbert ball, need not be a singleton.

In what follows, $D = D_1 \times \cdots \times D_p$ always denotes the cartesian product of a finite number of open unit balls $D_j = \{v \in V_j: ||v|| < 1\}$ in complex Hilbert spaces V_j , with inner product $\langle \cdot, \cdot \rangle_j$, for $j = 1, \dots, p$. We observe that D is the open unit ball of the ℓ^{∞} -sum V of the Hilbert spaces V_1, \dots, V_p :

$$V = V_1 \oplus_{\infty} \cdots \oplus_{\infty} V_p$$

where $\|(x_1, \dots, x_p)\| = \sup\{\|x_1\|, \dots, \|x_p\|\}$ for $(x_1, \dots, x_p) \in V$. We shall call D_j a Hilbert ball, and D a polyball in the sequel. If each D_j is the open unit disc $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ in the complex plane, D is usually called a polydisc.

There is a Jordan triple structure in each Hilbert space V_j , derived from the geometry of D_j . Indeed, V_j is equipped with a Jordan triple product

$$\{\cdot,\cdot,\cdot\}_j: V_i^3 \to V_j$$

defined by

$$\{a,b,c\}_j = \frac{1}{2} \left(\langle a,b \rangle_j c + \langle c,b \rangle_j a \right) \quad (a,b,c \in V_j).$$

With this triple product, V_j becomes a JB*-triple. The ℓ^{∞} -sum V is also a JB*-triple in the coordinatewise Jordan triple product:

$$\{(x_1,\ldots,x_p),(y_1,\ldots,y_p),(z_1,\ldots,z_p)\}=(\{x_1,y_1,z_1\}_1,\ldots,\{x_p,y_p,z_p\}_p)$$

for $(x_1, \ldots, x_p), (y_1, \ldots, y_p), (z_1, \ldots, z_p) \in V$. The subscript j for the inner product and triple product are often omitted if no confusion is likely.

We refer to the seminal paper [14] for the origin of JB*-triples and to [4,7,23] for the basics of JB*-triples as well as proofs of some facts used below. The relevance of JB*-triples rests with the fact that bounded symmetric domains in complex Banach spaces are biholomorphically the open unit balls of JB*-triples [14].

The biholomorphic maps of the open unit ball U of a JB*-triple Z with Jordan triple product $\{\cdot,\cdot,\cdot\}$ are determined by the Möbius transformations. The latter can be described as follows.

Given $a \in U$ and $b, c \in Z$, the box operator $b \square c : Z \to Z$ and the Bergmann operator $B(b, c) : Z \to Z$ are continuous linear maps defined by

$$(b \Box c)(x) = \{b, c, x\},\$$

$$B(b,c)(x) = x - 2(b \square c)(x) + \{b, \{c, x, c\}, b\} \quad (x \in Z).$$

The Möbius transformation $g_a: U \to U$, induced by a, is given by

$$g_a(z) = a + B(a, a)^{1/2} (I + z \square a)^{-1} (z) \quad (z \in U)$$

where I is the identity operator, the Bergmann operator B(a,a) has positive spectrum and the operator $I+z \square a$ is invertible for $z,a \in U$. The inverse of g_a is the map g_{-a} and g_a has no fixed point in U unless a=0.

The Kobayashi distance κ on U can be expressed in terms of the Möbius transformation:

$$\kappa(a, b) = \tanh^{-1} ||g_{-b}(a)|| \quad (a, b \in U)$$

(cf. [9, p. 85]), where we have

$$1 - \|g_{-b}(a)\|^2 = \|B(a, a)^{-1/2} B(a, b) B(b, b)^{-1/2}\|^{-1}$$
(1.1)

as shown in [19] (see also [4]). We will often make use of the identity

$$||B(a,a)^{-1/2}|| = \frac{1}{1 - ||a||^2} \quad (a \in U)$$
 (1.2)

(cf. [4, p. 194]).

For the open unit ball D_j of a Hilbert space V_j and $a \in D_j$, the Bergmann operator B(a, a) is a self-adjoint operator on V_j and its square root is given by

$$B(a,a)^{1/2}(z) = \sqrt{1 - \|a\|^2} \left(z + \left(\sqrt{1 - \|a\|^2} - 1 \right) \langle z, a \rangle_j \frac{a}{\|a\|^2} \right)$$
(1.3)

Download English Version:

https://daneshyari.com/en/article/4615960

Download Persian Version:

https://daneshyari.com/article/4615960

<u>Daneshyari.com</u>