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In this paper, we are concerned with a second order non-autonomous Hamiltonian system
on time scales T

u��
(
ρ(t)

) + V u
(
t, u(t)

) = f (t), t ∈ T
κ .

Under certain conditions, the existence and multiplicity of periodic solutions are obtained
for this Hamiltonian system on time scales by using the saddle point theory, the least
action principle as well as the three-critical-point theorem. In addition, the existence of
homoclinic orbit is obtained as a limit of 2kT -periodic solutions of a given sequence
of Hamiltonian system on time scales by means of the mountain pass theorem and the
standard minimizing argument.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

A time scale T is an arbitrary nonempty closed subset of the real numbers, which has the topology inherited from the
real numbers with the standard topology. Hilger [12] presented the theory of time scales with the motivation of providing
a unified approach to discrete and continuous analysis. In the past decades, there has been an increasing interest in the
study of dynamic equations on time scales [1,4,11,17,19,23,26–34], and time scales have become a crucial role in various
equations and systems arising in astronomy and biology, being particularly relevant in ecology, where homoclinic orbits
of dynamical systems on a time scale have been recognized to contribute critically to the stable or unstable outcome of
models of biological populations [4,5,9,23,25]. For example, they can model insect populations that evolve continuously
while in season, die out in winter while their eggs are incubating or dormant, and then hatch in a new season, giving rise
to a nonoverlapping population [4]. Therefore, theoretically and practically it is potentially helpful to study equations and
systems on time scales for their richer and more plausible dynamics.

Although considerable attention has been dedicated to homoclinic orbits for continuous or discrete Hamiltonian systems,
see [7,8,14,15,21,24,35–37] and the references therein. To the best of our knowledge, there is few work on homoclinic orbits
for Hamiltonian systems on time scales. One of interesting and open problems on dynamic equations on time scales is to
investigate positive solutions of discrete or continuous Hamiltonian systems on time scales with one goal being the unified
treatment of differential equations (the continuous case) and difference equations (the discrete case). Nonempty closed
subsets of the reals are considered to be time scales and quite a few sufficient conditions of the existence and multiplicity
of solutions for Hamiltonian systems have been presented [2,13,30,32,38].
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To address the motivation and goal of the study on homoclinic orbits and periodic solutions of Hamiltonian systems on
time scales, we start with a brief review on some related results in the existing literature. In [21], Rabinowitz considered a
second order continuous Hamiltonian system

ü + V u(t, u) = 0, (1)

where u ∈R
n and V ∈ C1(R×R

n,R) is T -periodic in t . Under certain assumptions on V , the homoclinic orbit u is obtained
as the limit of 2kT -periodic solutions uk of system (1) as k → ∞. The subharmonic uk is obtained in turn via the mountain
pass theorem. In [14,15], Izydorek and Janczewska dealt with the existence of homoclinic orbits of system (1) with the
forcing term. The novelties are a relaxed superquadratic assumption on the time-periodic potential V (t, u), and the addition
of a small but possibly aperiodic forcing term f (t) to the equation.

In [32], Su and Li considered a non-autonomous second order Hamiltonian system{
u�2(

ρ(t)
) = ∇H

(
t, u(t)

)
, �-a.e. t ∈ [0, T ]T,

u(0) − u(T ) = u�
(
ρ(0)

) − u�
(
ρ(T )

) = 0,
(2)

and established the existence of periodic solutions of system (2) on time scales T. A distinctive feature lies in that the
integral used therein is not Hilger’s integral but a new integral on time scales T. On the base of Hilger’s integral, Zhou
and Li [38] explored Sobolev’s spaces on time scales. As an application, they investigated the existence of solutions for the
following second order Hamiltonian systems on time scales T{

u�2
(t) = ∇ F

(
σ(t), uσ (t)

)
, �-a.e. t ∈ [0, T ]Tκ ,

u(0) − u(T ) = 0, u�(0) − u�(T ) = 0.

Su and Feng [30] applied the variational method and the critical point theory to study the same problem and established
the existence and multiplicity of periodic solutions for this Hamiltonian system.

In this paper, we consider a second order non-autonomous Hamiltonian system on time scales T:

u��
(
ρ(t)

) + V u(t, u) = f (t), (3)

where t ∈ T
κ , u ∈ R

n , V : T × R
n → R and f : T → R

n . When V (t, x) = −K (t, x) + W (t, x) is measurable in t for every
x ∈ R

n and continuously differentiable in x for t ∈ T, both K (t, x) and W (t, x) are T -periodic in t , and f (t) is a T -periodic
bounded function, we obtain the existence of at least one periodic solution by using the saddle point theorem and the least
action principle, and obtain at least three distinct periodic solutions via the three-critical-point theorem. These results are
sharp even for the associated differential (T = R) and difference equations (T = Z). When V is C1

�-smooth and T -periodic
functions with respect to t , a homoclinic orbit of Hamiltonian system (3) is obtained as a limit of 2kT -periodic solutions
of a certain sequence of Hamiltonian system on time scales by developing the mountain pass theorem and the standard
minimizing argument.

We say that a solution u of Hamiltonian system (3) is homoclinic to zero if it satisfies u(t) → 0 as t → ±∞, where t ∈ T.
In addition, if u �= 0, then u is called a nontrivial homoclinic solution.

The paper is outlined as follows. In Section 2, we introduce some background information on the delta derivative of f
from T → R

N and the related definitions. In Section 3, we present some technical lemmas. In Section 4, we show the
variational structure of our Hamiltonian system, and establish the existence and multiplicity of its periodic solutions. In
the subsequent paper, we prove the existence of homoclinic orbit of the second order Hamiltonian system (3) on time
scales.

2. Preliminaries

To make this paper self-contained and state our discussions in a straightforward way, in this section we present some
basic definitions and the related propositions [4,10,12,16,22,30,32,38] which may help us better understand our main results
and proofs described in Sections 4 and 5. For the terminologies such as the measure on time scales, absolute continuity
on time scales, and fundamental properties of Sobolev’s spaces on time scales, we refer the reader to [16,22,38] and the
references therein.

A time scale T is a nonempty closed subset of R. If T has a right-scattered minimum m, we define Tκ = T − {m};
otherwise, we set Tκ = T. If T has a left-scattered maximum M , we define T

κ = T − {M}; otherwise, we set T
κ = T. The

forward graininess is μ(t) := σ(t) − t . Similarly, the backward graininess is ν(t) := t − ρ(t).
If f : T → R is a function and t ∈ T

κ , the delta derivative of f at the point t is defined by the number f �(t) (provided
it exists) with the property that for any ε > 0, there is a neighborhood U ⊂ T of t such that∣∣ f

(
σ(t)

) − f (s) − f �(t)
(
σ(t) − s

)∣∣ � ε
∣∣σ(t) − s

∣∣
for all s ∈ U .
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