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We study the asymptotic behavior of least energy solutions to (E,) when the nonlinear
exponent p gets large. Following the arguments of X. Ren and ].C. Wei [13,14], we show
that the least energy solutions remain bounded uniformly in p, and it develops one peak
on the boundary, the location of which is controlled by the Green function associated to
the linear problem.
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1. Introduction

In this paper, we consider the following elliptic problem with the nonlinear Neumann boundary condition:

—Au+u=0 in$2,

(Ep) u>0 in £2, (1.1)
ou __
= uP on ds2,
where £2 is a smooth bounded domain in R?, v is the outer unit normal vector to 352, and p > 1 is any positive number.
Let H'(£2) be the usual Sobolev space with the norm ”””iﬂ(m = fQ(|Vu|2 + u2)dx. Since the trace Sobolev embedding

H'(£2) — LP*1(3£2) is compact for any p > 1, we can obtain at least one solution of (1.1) by a standard variational method.
In fact, let us consider the constrained minimization problem

Clzj=inf{/(|Vu|2+u2)dx‘ueH](Q), /|u|P+1 dsle}. (1.2)
482

Standard variational method implies that C‘Z7 is achieved by a positive function i, € H!(£2) and then u, = Cﬁ/(pfl)ﬁp solves
(1.1). We call uj, a least energy solution to the problem (1.1).
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In this paper, we prove the followings:

Theorem 1. Let u;, be a least energy solution to (Ep). Then it holds

1 < liminf |up|lre@e) < limsup [[upllie@e) < Ve.
p—o0 p—>00

To state further results, we set

vp=up/</u§dsx>. (1.3)

a2

Theorem 2. Let 2 C R? be a smooth bounded domain. Then for any sequence Vp, of vp defined in (1.3) with p, — oo, there exists a
subsequence (still denoted by v, ) and a point xo € 952 such that the following statements hold true.

(1)

pn
uPn _*\

Sy Upy dsx
in the sense of Radon measures on 952.
(2) vp, = G(-, x0) in C}OC(Q \ {x0}), L'(£2) and L' (32) respectively for any 1 <t < oo, where G(x, y) denotes the Green function
of —A for the following Neumann problem:

—AxG(x,¥)+G(x,y) =0 ing2,
35 (x, y) =8y (%) onds.

i

5)(0

(14)

(3) xo satisfies

Vi) R(X0) = 0,

where T (xg) denotes a tangent vector at the point xo € 52 and R is the Robin function defined by R(x) = H(x, x), where

1 _
Hx, ) = Gx, y) = —log|x = y| !

denotes the regular part of G.

Concerning related results, X. Ren and J.C. Wei [13,14] first studied the asymptotic behavior of least energy solutions to
the semilinear problem

—Au=uP ing2,
u>0 in £2,
u=20 onods2

as p — oo, where £ is a bounded smooth domain in R2. They proved that the least energy solutions remain bounded
and bounded away from zero in L°°-norm uniformly in p. As for the shape of solutions, they showed that the least energy
solutions must develop one “peak” in the interior of £2, which must be a critical point of the Robin function associated with
the Green function subject to the Dirichlet boundary condition. Later, Adimurthi and Grossi [1] improved their results by
showing that, after some scaling, the limit profile of solutions is governed by the Liouville equation

—AU =eYinR?, /e”dx<oo,
R2
and obtained that limp_, « ||up|l1=(2) = +/€ for least energy solutions u,. Actual existence of concentrating solutions to (1.1)
is recently obtained by H. Castro [4] by a variational reduction procedure, along the line of [8] and [6]. As for construction

of concentrating solutions to related problems, see also [7,9], and [11].
Also in our case, we may conjecture that the limit problem of (1.1) is

AU =0 inR2,
au _ LU 2
9 =e on dR7,

[3r2 eV ds < oo,
2

and limp_, oo [|Up Iz 9e2) = v/ holds true at least for least energy solutions u,. Verification of these conjectures remains as
the future work.
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