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In this note, we consider the pointwise convergence along curves for the Schrödinger
equation and obtain estimates for the capacitary dimension of divergence sets which
extend our previous result in [6].
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1. Introduction

Let us consider the initial value problem for the free Schrödinger equation{
i∂t u + �xu = 0, (x, t) ∈R

d ×R,

u(x,0) = f (x) ∈ Hs
(
R

d
)
,

where Hs is the L2-Sobolev space of order s of which norm is defined by ‖ f ‖2
Hs = ∫

R2 (1+|ξ |)2s |̂ f (ξ)|2 dξ . Then, the solution
is formally written as

u(x, t) = eit� f (x) = (2π)−d
∫
Rd

ei(x·ξ−t|ξ |2) f̂ (ξ)dξ.

The problem of determining the optimal s which guarantees

lim
t→0

u(x, t) = f (x) a.e.

whenever f ∈ Hs was first consider by Carleson [5]. When spatial dimension d = 1, the convergence is true if and only
if s � 1

4 (see Carleson [5], and Dahlberg and Kenig [7]). In higher dimension, the convergence for s > 1/2 was shown by
Sjölin [14] and Vega [17], independently. Further progress was made in connect with Fourier restriction estimates for the
paraboloid [2,4,8,11,15,16]. In fact, the best known regularity for d = 2 is s > 3

8 [8]. Recently, when d � 3, Bourgain [3]

obtained the convergence holds for s > 1
2 − 1

4d and the necessary condition s � 1
2 − 1

d .
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The sets of Lebesgue measure zero are still large in some sense. So, one may consider to refine the problem. A natural
extension is to in ask the dimension of divergence set. For f ∈ H s , let us define the divergence set to be{

x ∈R
d: u(x, t) does not converge to f (x) as t → 0

}
.

In this direction, Sjölin and Sjog̈ren [12] obtained some bound of the Hausdorff dimension of the divergence set. Recently,
Barceló, Bennett, Carbery and Rogers [1] obtained strengthened results.

The aforementioned problem can be thought of as convergence to the initial datum along the vertical lines (x, t), t ∈ R.
A natural generalization is the convergence along curves. In [6] relation between tangency of the curves and required
regularity for almost everywhere convergence was investigated and a sharp result was obtained when d = 1. In this short
note we extend the result in [6] by measuring the dimension of divergence set. For this purpose, we use the capacitary
dimension.

Capacitary dimension

Let 0 < α � 1. We say that a positive Borel measure μ is α-dimensional if

μ
(

I(x, r)
)
� crα, (x, r) ∈R×R+ . (1)

Here, I(x, r) is the interval centered at x with radius r. Let A be a subset in R
d and denote by Mα(A) the set of α-dimen-

sional measures which have compact support contained in A with 0 < μ(A) < ∞. Then the capacitary dimension is defined
by

dimc A = sup
{
α: ∃μ ∈ Mα(A)

}
.

If such α does not exist, dimc A = 0. Of course, this occurs only if A = ∅. By Frostman’s lemma, it follows that there exists
an α-dimensional probability measure μ on A if and only if Hausdorff dimension of A � α provided that A is a Borel
set [10]. In this case, the capacitary dimension of A equals the Hausdorff dimension.

Convergence along variable curves in R×R

Let γ be a continuous function such that

γ : R× [−1,1] → R, γ (x,0) = x.

We consider the class of curves which satisfy the followings:

• Hölder condition of order κ , 0 < κ � 1,∣∣γ (x, s) − γ (x, t)
∣∣ � C0|s − t|κ , ∀s, t ∈ [0,1]. (2)

• Bilipschitz condition

C1|x − y| � ∣∣γ (x, t) − γ (y, t)
∣∣ � C2|x − y|, ∀x, y. (3)

Here the parameter κ may be considered to represent the degree of tangential convergence and the most typical example
is γ (x, t) = x − tκ .

Now we define for f ∈ Hs

D(γ , f ) = {
x: eit� f

(
γ (x, t)

)
does not converge to f (x) as t → 0

}
.

In [6] convergence depending on κ was studied and it was shown that the divergence set D(γ , f ) has Lebesgue measure
zero whenever f ∈ Hs with s > max{ 1

4 , 1−2κ
2 }. The following is our main result.

Theorem 1.1. Let 0 < κ � 1. Suppose that (2) and (3) hold. If f ∈ Hs with s > 1
4 , then

dimc
(
D(γ , f )

)
� max

{
1 − 2s,

1 − 2s

2κ

}
.

Compared to the result in [1] which deals with convergence along vertical line and corresponds to the case κ = 1
this extends the convergence to the curves which approaches tangentially to initial data. Theorem 1.1 is a straightforward
consequence of the following.
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