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For a Tychonoff space X, we denote by Cp(X) and C.(X) the space of continuous
real-valued functions on X equipped with the topology of pointwise convergence and
the compact-open topology respectively. Providing a characterization of the Lindel6f
X -property of X in terms of Cp(X), we extend Okunev’s results by showing that if there
exists a surjection from C,(X) onto Cp(Y) (resp. from Lp(X) onto L,(Y)) that takes
bounded sequences to bounded sequences, then vY is a Lindelof X-space (respectively
K-analytic) if vX has this property. In the second part, applying Christensen’s theorem,
we extend Pelant’s result by proving that if X is a separable completely metrizable space
and Y is first countable, and there is a quotient linear map from C.(X) onto C.(Y),
then Y is a separable completely metrizable space. We study also a non-separable case,
and consider a different approach to the result of J. Baars, J. de Groot, ]. Pelant and V. Valov,
which is based on the combination of two facts: Complete metrizability is preserved
by ¢,-equivalence in the class of metric spaces (J. Baars, ]. de Groot, ]. Pelant). If X
is completely metrizable and ¢p-equivalent to a first-countable Y, then Y is metrizable
(V. Valov). Some additional results are presented.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

All spaces considered in this article are assumed to be completely regular and Hausdorff. We use terminology and

notation as in [10]. We say that a set A in a space X is functionally bounded in X if every continuous real-valued function
on X is bounded on A. A space X is a u-space if every closed functionally bounded subspace of X is compact. A Polish
space is a separable completely metrizable space. The symbol @ denotes the smallest infinite ordinal (so w is the set of all
non-negative integers).

We denote by Cp(X) and C.(X) the spaces of continuous real-valued functions on X endowed with the topology of
pointwise convergence and the compact-open topology respectively. L,(X) is the topological dual of C,(X) endowed with
the weak™ topology. We assume that X is a subspace of L,(X) by virtue of the standard embedding x — X where X(f) = f(x)
for each f e Cp(X).

Recall that Nagata’s theorem states that if the topological rings Cp(X) and C,(Y) are topologically isomorphic, then X
and Y are homeomorphic, see [5]. This suggests the following problem, see [2].
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Two spaces X and Y are said to be t-equivalent (£p-equivalent) if the spaces C,(X) and Cp(Y) are homeomorphic (linearly
homeomorphic). We say that a topological property P is preserved by t-equivalence ({£,-equivalence) if whenever two
spaces X and Y are t-equivalent (£,-equivalent) and X has the property P, Y has the property P too.

What topological properties are preserved by the relations of t-equivalence and £p-equivalence?

Clearly, a property P is preserved by the relation of t-equivalence (£p-equivalence) if and only if there is a dual topo-
logical (linear topological) property Q such that X has P if and only if C;(X) has Q; in different words, if P “admits
a description in terms of the (linear) topological structure of Cp(X)".

We will say that two spaces X and Y are {.-equivalent if the spaces C.(X) and C.(Y) are linearly homeomorphic.
Note that if X and Y are £p-equivalent and X is a w-space, then the spaces X and Y are also {.-equivalent, see [4].
It is well known (by a combination of Milyutin’s and Pestov’s results, see [4, Theorem 3]) that [0, 1] and [0, 1] x [0, 1]
are {c-equivalent but not £p-equivalent. On the other hand, if X and Y are {p-equivalent and X is Dieudonné complete
(in particular, if X is paracompact or realcompact), then X and Y are £.-equivalent, see [4, Theorem 1].

We say that a space X {.-covers a space Y if there is a continuous open linear mapping from C.(X) onto C.(Y). Clearly,
if X and Y are £.-equivalent, then each of the two {.-covers the other.

There are many known results about preservation and non-preservation of various topological properties by t-equivalence
and £p-equivalence; see, e.g., [4-6,20,27]. For example, metrizability, local compactness, the countability of weight, normal-
ity and paracompactness are not £p-invariant. On the other hand, hemicompactness, the property of being an Rg-space,
the Lindelof X'-property, K-analyticity and analyticity are preserved by £,-equivalence.

We denote by P the space w® endowed with the Tychonoff product topology (with all the factors discrete). We equip
the space P with the natural partial order: p < q if and only if p(n) < q(n) for all n € w. For an element p of P and
a natural number k we denote by pl|k the finite sequence (p(1),...,p(k)). Given a finite sequence o = (o1, ...,0y) of
natural numbers, we denote by W (o) the set {p € P: p|n=o}. Clearly, for every p € P, the family of sets {W (p|n): n € w}
is a base of open neighborhoods of p in P.

A family of subspaces R ={Ap: p € P} of a space X is called a resolution of X if it covers X and A, C A; whenever
p < q. We say that a resolution R is compact if each element A, of R is compact. If X is a topological vector space, we say
that a resolution R of X is bounded if each element of R is bounded in X (that is, absorbed by any neighborhood of zero).
A resolution R swallows compact sets if every compact subspace of X is contained in some element of R.

As usual, a set-valued mapping T: X — Y is called compact valued if the set T(x) is compact for every x € X, and is
upper semicontinuous if for every open set V in Y, the set {x € X: T(x) C V} is open. We abbreviate “compact valued upper
semicontinuous” as “usco”. For a set A C X we denote T(A) = |J{T(x): x € A}, and we say that T is onto Y if T(X) =Y.
We denote the family of all compact subspaces of a space X by K(X) (so compact-valued mappings to X are the same as
functions to KC(X)).

In Section 2 we find a characterization of Lindel6f X-property of vX in terms of the linear topological structure of
Cp(X) and use it to show that if vX is a Lindeléf X'-space or a K-analytic space and there exists a surjection from Lp(X)
onto Ly(Y) that takes bounded sequences to bounded sequences, then vY is a Lindeléf X-space (respectively, K-analytic);
we prove a similar statement for the Lindeldf X-property of vX and mappings between C,(X) and Cp(Y). This supplements
some earlier results of Okunev [18].

A. Arhangel’skii asks in [3, Problem 20] if a first-countable space Y which is £,-equivalent to a metrizable space X must
also be metrizable. In [6, Theorem 3.3| J. Baars, ]. de Groot and ]. Pelant proved that complete metrizability is preserved by
£,-equivalence in the class of metrizable spaces. They also gave an alternative proof for separable metrizable spaces by using
Christensen’s theorem (Theorem 1 below), [6, Theorem 5.1, Theorem 5.3]. Later on, Valov proved, using the results in [25],
that the answer to Arhangel’skii’s problem is positive for Cech-complete spaces Y, see [27, Corollary 4.6]. The combination
of the above facts yields: The property of being a completely metrizable space is preserved by the £,-equivalence for spaces satisfying
the first axiom of countability.

In Section 3 of this article we discuss the preservation of complete metrizability by ¢.-equivalence. We give a different
proof of the preservation of complete metrizability in the case of ¢.-equivalent spaces X and Y where X is Polish and Y
is first countable, and discuss the non-separable case. Note however that from Valov's quite technical [27, Corollary 4.6] it
follows that if X is completely metrizable, Y is paracompact first countable, and there is a continuous surjection from C.(X)
onto C.(Y), then Y is completely metrizable. Our approach is different and uses a property of C.(X) which is preserved by
linear open maps and characterizes spaces X with a compact resolution swallowing compact sets (Theorem 14, Corollary 15).
The importance of this concept stems from the following deep result of J.P.R. Christensen [8, Theorem 3.3].

Theorem 1. A metrizable space X is Polish if and only if X admits a compact resolution swallowing compact sets.

We partially extend Theorem 1 to the non-separable case, see Proposition 16 below, and we apply this extension to show
that if a space Y is ¢.-covered by a completely metrizable space of weight «, then Y admits a compact cover swallowing
compact sets similar to a resolution. In particular, if Y is of pointwise countable type and X is Polish, then Y is separable and
completely metrizable (Corollary 24). The separable case will be deduced from Theorem 21 showing that if X is an 8g-space
and there is an open continuous linear mapping from C.(X) onto C.(Y), then Y is an 8g-space. Indeed, the latter fact and
Theorem 1 apply to prove that if for a separable completely metrizable space X there exists a quotient linear map from
Ce(X) onto Cc(Y) and Y is first countable, then Y is separable and completely metrizable.
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