

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Compact covers and function spaces *

J. Kąkol^a, M. Lopez-Pellicer^{b,*}, O. Okunev^c

- ^a Faculty of Mathematics and Informatics, A. Mickiewicz University, 61-614 Poznań, Poland
- ^b Depto. de Matemática Aplicada and IUMPA, Universitat Politècnica de València, E-46022 València, Spain
- ^c Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Rio Verde s/n, Col. San Manuel, Ciudad Universitaria, CP 72570 Puebla, Puebla, Mexico

ARTICLE INFO

Article history: Received 4 April 2013 Available online 27 September 2013 Submitted by B. Cascales

Keywords:
Compact resolution C(X)- and $L_p(X)$ -spaces
Čech-complete space
Lindelöf Σ , K-analytic, analytic spaces ℓ_p -, ℓ_c - and t-equivalence
Pointwise countable type spaces
Polish space
Real compactification μ -space
Web-bounded spaces

ABSTRACT

For a Tychonoff space X, we denote by $C_p(X)$ and $C_c(X)$ the space of continuous real-valued functions on X equipped with the topology of pointwise convergence and the compact-open topology respectively. Providing a characterization of the Lindelöf Σ -property of X in terms of $C_p(X)$, we extend Okunev's results by showing that if there exists a surjection from $C_p(X)$ onto $C_p(Y)$ (resp. from $L_p(X)$ onto $L_p(Y)$) that takes bounded sequences to bounded sequences, then vY is a Lindelöf Σ -space (respectively K-analytic) if vX has this property. In the second part, applying Christensen's theorem, we extend Pelant's result by proving that if X is a separable completely metrizable space and Y is first countable, and there is a quotient linear map from $C_c(X)$ onto $C_c(Y)$, then Y is a separable completely metrizable space. We study also a non-separable case, and consider a different approach to the result of J. Baars, J. de Groot, J. Pelant and V. Valov, which is based on the combination of two facts: Complete metrizability is preserved by ℓ_p -equivalence in the class of metric spaces (J. Baars, J. de Groot, J. Pelant). If J is completely metrizable and J-equivalent to a first-countable J, then J is metrizable (J0. Valov). Some additional results are presented.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

All spaces considered in this article are assumed to be completely regular and Hausdorff. We use terminology and notation as in [10]. We say that a set A in a space X is functionally bounded in X if every continuous real-valued function on X is bounded on A. A space X is a μ -space if every closed functionally bounded subspace of X is compact. A *Polish space* is a separable completely metrizable space. The symbol ω denotes the smallest infinite ordinal (so ω is the set of all non-negative integers).

We denote by $C_p(X)$ and $C_c(X)$ the spaces of continuous real-valued functions on X endowed with the topology of pointwise convergence and the compact-open topology respectively. $L_p(X)$ is the topological dual of $C_p(X)$ endowed with the weak* topology. We assume that X is a subspace of $L_p(X)$ by virtue of the standard embedding $x \mapsto \hat{x}$ where $\hat{x}(f) = f(x)$ for each $f \in C_p(X)$.

Recall that Nagata's theorem states that if the topological rings $C_p(X)$ and $C_p(Y)$ are topologically isomorphic, then X and Y are homeomorphic, see [5]. This suggests the following problem, see [2].

E-mail addresses: kakol@amu.edu.pl (J. Kakol), mlopezpe@mat.upv.es (M. Lopez-Pellicer), oleg@fcfm.buap.mx (O. Okunev).

[†] The research was supported for the first named author by National Center of Science, Poland, Grant No. N N201 605340, and for the first and second named authors by Generalitat Valenciana, Conselleria d'Educació i Esport, Spain, Grant PROMETEO/2013/058.

^{*} Corresponding author.

Two spaces X and Y are said to be t-equivalent (ℓ_p -equivalent) if the spaces $C_p(X)$ and $C_p(Y)$ are homeomorphic (linearly homeomorphic). We say that a topological property $\mathcal P$ is preserved by t-equivalence (ℓ_p -equivalence) if whenever two spaces X and Y are t-equivalent (ℓ_p -equivalent) and X has the property $\mathcal P$, Y has the property $\mathcal P$ too.

What topological properties are preserved by the relations of t-equivalence and ℓ_p -equivalence?

Clearly, a property \mathcal{P} is preserved by the relation of t-equivalence (ℓ_P -equivalence) if and only if there is a *dual* topological (linear topological) property \mathcal{Q} such that X has \mathcal{P} if and only if $C_p(X)$ has \mathcal{Q} ; in different words, if \mathcal{P} "admits a description in terms of the (linear) topological structure of $C_p(X)$ ".

We will say that two spaces X and Y are ℓ_c -equivalent if the spaces $C_c(X)$ and $C_c(Y)$ are linearly homeomorphic. Note that if X and Y are ℓ_p -equivalent and X is a μ -space, then the spaces X and Y are also ℓ_c -equivalent, see [4]. It is well known (by a combination of Milyutin's and Pestov's results, see [4, Theorem 3]) that [0,1] and $[0,1] \times [0,1]$ are ℓ_c -equivalent but not ℓ_p -equivalent. On the other hand, if X and Y are ℓ_p -equivalent and X is Dieudonné complete (in particular, if X is paracompact or realcompact), then X and Y are ℓ_c -equivalent, see [4, Theorem 1].

We say that a space X ℓ_c -covers a space Y if there is a continuous open linear mapping from $C_c(X)$ onto $C_c(Y)$. Clearly, if X and Y are ℓ_c -equivalent, then each of the two ℓ_c -covers the other.

There are many known results about preservation and non-preservation of various topological properties by t-equivalence and ℓ_p -equivalence; see, e.g., [4–6,20,27]. For example, metrizability, local compactness, the countability of weight, normality and paracompactness are not ℓ_p -invariant. On the other hand, hemicompactness, the property of being an \aleph_0 -space, the Lindelöf Σ -property, K-analyticity and analyticity are preserved by ℓ_p -equivalence.

We denote by \mathbb{P} the space ω^{ω} endowed with the Tychonoff product topology (with all the factors discrete). We equip the space \mathbb{P} with the natural partial order: $p \leq q$ if and only if $p(n) \leq q(n)$ for all $n \in \omega$. For an element p of \mathbb{P} and a natural number k we denote by p|k the finite sequence $(p(1), \ldots, p(k))$. Given a finite sequence $\sigma = (\sigma_1, \ldots, \sigma_n)$ of natural numbers, we denote by $W(\sigma)$ the set $\{p \in \mathbb{P}: p|n = \sigma\}$. Clearly, for every $p \in \mathbb{P}$, the family of sets $\{W(p|n): n \in \omega\}$ is a base of open neighborhoods of p in \mathbb{P} .

A family of subspaces $\mathcal{R} = \{A_p \colon p \in \mathbb{P}\}$ of a space X is called a *resolution* of X if it covers X and $A_p \subset A_q$ whenever $p \leqslant q$. We say that a resolution \mathcal{R} is *compact* if each element A_p of \mathcal{R} is compact. If X is a topological vector space, we say that a resolution \mathcal{R} of X is *bounded* if each element of \mathcal{R} is bounded in X (that is, absorbed by any neighborhood of zero). A resolution \mathcal{R} *swallows compact sets* if every compact subspace of X is contained in some element of \mathcal{R} .

As usual, a set-valued mapping $T: X \to Y$ is called *compact valued* if the set T(x) is compact for every $x \in X$, and is *upper semicontinuous* if for every open set V in Y, the set $\{x \in X: T(x) \subset V\}$ is open. We abbreviate "compact valued upper semicontinuous" as "usco". For a set $A \subset X$ we denote $T(A) = \bigcup \{T(x): x \in A\}$, and we say that T is *onto* Y if T(X) = Y. We denote the family of all compact subspaces of a space X by K(X) (so compact-valued mappings to X are the same as functions to K(X)).

In Section 2 we find a characterization of Lindelöf Σ -property of υX in terms of the linear topological structure of $C_p(X)$ and use it to show that if υX is a Lindelöf Σ -space or a K-analytic space and there exists a surjection from $L_p(X)$ onto $L_p(Y)$ that takes bounded sequences to bounded sequences, then υY is a Lindelöf Σ -space (respectively, K-analytic); we prove a similar statement for the Lindelöf Σ -property of υX and mappings between $C_p(X)$ and $C_p(Y)$. This supplements some earlier results of Okunev [18].

A. Arhangel'skii asks in [3, Problem 20] if a first-countable space Y which is ℓ_p -equivalent to a metrizable space X must also be metrizable. In [6, Theorem 3.3] J. Baars, J. de Groot and J. Pelant proved that complete metrizability is preserved by ℓ_p -equivalence in the class of metrizable spaces. They also gave an alternative proof for separable metrizable spaces by using Christensen's theorem (Theorem 1 below), [6, Theorem 5.1, Theorem 5.3]. Later on, Valov proved, using the results in [25], that the answer to Arhangel'skii's problem is positive for Čech-complete spaces Y, see [27, Corollary 4.6]. The combination of the above facts yields: The property of being a completely metrizable space is preserved by the ℓ_p -equivalence for spaces satisfying the first axiom of countability.

In Section 3 of this article we discuss the preservation of complete metrizability by ℓ_c -equivalence. We give a different proof of the preservation of complete metrizability in the case of ℓ_c -equivalent spaces X and Y where X is Polish and Y is first countable, and discuss the non-separable case. Note however that from Valov's quite technical [27, Corollary 4.6] it follows that if X is completely metrizable, Y is paracompact first countable, and there is a continuous surjection from $C_c(X)$ onto $C_c(Y)$, then Y is completely metrizable. Our approach is different and uses a property of $C_c(X)$ which is preserved by linear open maps and characterizes spaces X with a compact resolution swallowing compact sets (Theorem 14, Corollary 15). The importance of this concept stems from the following deep result of J.P.R. Christensen [8, Theorem 3.3].

Theorem 1. A metrizable space X is Polish if and only if X admits a compact resolution swallowing compact sets.

We partially extend Theorem 1 to the non-separable case, see Proposition 16 below, and we apply this extension to show that if a space Y is ℓ_c -covered by a completely metrizable space of weight κ , then Y admits a compact cover swallowing compact sets similar to a resolution. In particular, if Y is of pointwise countable type and X is Polish, then Y is separable and completely metrizable (Corollary 24). The separable case will be deduced from Theorem 21 showing that if X is an \aleph_0 -space and there is an open continuous linear mapping from $C_c(X)$ onto $C_c(Y)$, then Y is an \aleph_0 -space. Indeed, the latter fact and Theorem 1 apply to prove that if for a separable completely metrizable space X there exists a quotient linear map from $C_c(X)$ onto $C_c(Y)$ and Y is first countable, then Y is separable and completely metrizable.

Download English Version:

https://daneshyari.com/en/article/4616010

Download Persian Version:

https://daneshyari.com/article/4616010

<u>Daneshyari.com</u>