

Regularizing effects for the classical solutions to the Landau equation in the whole space

Shuangqian Liu ${ }^{\text {a }}$, Xuan Ma ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, Jinan University, Guangzhou 510632, China
b Department of Mathematics, Guangdong University of Education, Guangzhou 510303, China

A R T I C L E I N F O

Article history:
Received 6 April 2013
Available online 13 March 2014
Submitted by D. Wang

Keywords:

Landau equation
Hypo-elliptic estimate
Regularizing effect

Abstract

The Landau equation describes the binary collisional effects (through long range coulombian interaction) in a plasma. In this paper, we prove that the known classical solutions to the Landau equation near Maxwellian in the whole space have a regularizing effect in all (time, space and velocity) variables, that is, become immediately smooth with respect to all variables.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction and statement of the main result

We consider the following generalized Landau equation:

$$
\begin{equation*}
\partial_{t} F+v \cdot \nabla_{x} F=\nabla_{v} \cdot\left\{\int_{\mathbf{R}^{3}} \psi(v-u)\left[F(u) \nabla_{v} F(v)-F(v) \nabla_{u} F(u)\right] d u\right\}, \tag{1.1}
\end{equation*}
$$

with the initial data $F(0, x, v)=F_{0}(x, v)$. Here $F(t, x, v) \geqslant 0$ is the distribution function for the particles at time $t \geqslant 0$, with spatial variable $x \in \mathbf{R}^{3}$ and velocity $v \in \mathbf{R}^{3}$. The non-negative matrix ψ is defined as

$$
\psi^{i j}(v)=\left\{\delta^{i j}-\frac{v_{i} v_{j}}{|v|^{2}}\right\}|v|^{\gamma+2}
$$

The index γ is a parameter leading to the standard classification of hard potential $(\gamma>0)$, the Maxwellian molecule ($\gamma=0$) or soft potential $(\gamma<0)$, cf. [9,23]. The original Landau collision operator for the Coulombic interaction corresponds to the case $\gamma=-3$. In this paper, we restrict our discussion to the case $-3 \leqslant \gamma<-2$.

[^0]It is well known that the classical Landau collision operator can be formally derived from the Boltzmann operator when the collision between particles become grazing. As in the Boltzmann equation, we denote a global Maxwellian by

$$
M(v)=(2 \pi)^{-3 / 2} e^{-|v|^{2} / 2}
$$

with the standard perturbation $F(t, x, v)$ to M as

$$
F=M(v)+\sqrt{M} f
$$

Then the Landau equation (1.1) for $f(t, x, v)$ takes the form

$$
\begin{equation*}
\partial_{t} f+v \cdot \nabla_{x} f+L f=\Gamma(f, f), \quad f(0, x, v)=f_{0}(x, v) \tag{1.2}
\end{equation*}
$$

The Landau collision frequency is

$$
\sigma^{i j}=\int_{\mathbf{R}^{3}} \psi^{i j}(v-u) M(u) d u
$$

The linearized collision operator L in (1.2) is defined as [12,21]

$$
\begin{equation*}
L f=-\frac{1}{\sqrt{M}}\{Q(M, \sqrt{M} f)+Q(\sqrt{M} f, M)\}=-A f-K f \tag{1.3}
\end{equation*}
$$

where

$$
\begin{align*}
A f= & \frac{1}{\sqrt{M}} Q(M, \sqrt{M} f)=\partial_{i}\left[\sigma^{i j} \partial_{j} f\right]-\sigma^{i j} \frac{v_{i} v_{j}}{4} f+\partial_{i}\left[\sigma^{i j} v_{j}\right] f, \tag{1.4}\\
K f= & \frac{1}{\sqrt{M}} Q(\sqrt{M} f, M)=-\partial_{i}\left\{M^{\frac{1}{2}}(v)\left[\psi^{i j} *\left(M^{\frac{1}{2}}\left(\partial_{j} f+\frac{v_{j}}{2} f\right)\right)\right]\right\} \\
& +\frac{v_{i}}{2} M^{\frac{1}{2}}(v)\left[\psi^{i j} *\left(M^{\frac{1}{2}}\left(\partial_{j} f+\frac{v_{j}}{2} f\right)\right)\right], \tag{1.5}
\end{align*}
$$

and the collision operator $\Gamma(f, g)$ is given by

$$
\begin{align*}
\Gamma[f, g]= & M^{-1 / 2} Q\left[M^{1 / 2} f, M^{1 / 2} g\right] \\
= & \partial_{i}\left\{\left[\psi^{i j} *\left(M^{1 / 2} f\right)\right] \partial_{j} g\right\}-\left\{\left[\psi^{i j} *\left(\frac{v_{i}}{2} M^{1 / 2} f\right)\right]\right\} \partial_{j} g \\
& -\partial_{i}\left\{\left[\psi^{i j} *\left(M^{1 / 2} \partial_{j} f\right)\right] g\right\}+\left\{\left[\psi^{i j} *\left(\frac{v_{i}}{2} M^{1 / 2} \partial_{j} f\right)\right]\right\} g, \tag{1.6}
\end{align*}
$$

where we have used Einstein's summation for the repeated indices.
For notational simplicity, we use $\langle\cdot, \cdot\rangle$ to denote the L^{2} inner product in \mathbf{R}_{v}^{3}, with its L^{2} norm given by $|\cdot|_{2}$, and (\cdot, \cdot) is L^{2} inner product in $\mathbf{R}_{x}^{3} \times \mathbf{R}_{v}^{3}$ with corresponding L^{2} norm $\|\cdot\|$. For $s \in \mathbf{R}, m \in \mathbb{Z}^{+}$, $p \geqslant 0$, we use the standard notation H^{s} or $W^{m, p}$ to denote the usual Sobolev space. Given any $k \in \mathbf{R}^{3}$ and function $f(x)$, let

$$
\begin{equation*}
\triangle_{k} f=f(x+k)-f(x) \tag{1.7}
\end{equation*}
$$

We shall also use (\cdot, \cdot) to denote the L^{2} inner product in $\mathbf{R}_{x}^{3} \times \mathbf{R}_{v}^{3} \times \mathbf{R}_{k}^{3}$ with corresponding L^{2} norm $\|\|\cdot\|$.

https://daneshyari.com/en/article/4616033

Download Persian Version:
https://daneshyari.com/article/4616033

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: maxuan@gdei.edu.cn (X. Ma).
 http://dx.doi.org/10.1016/j.jmaa.2014.03.006
 0022-247X/© 2014 Elsevier Inc. All rights reserved.

