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1. Introduction

Chemotaxis is the movement of biological organisms oriented towards the gradient of some substance,
called the chemoattractant. The Patlak—Keller-Segel (PKS) model (see [14], [13] and [18]) has been in-
troduced in order to explain chemotaxis cell aggregation by means of a coupled system of two equations:
a drift-diffusion type equation for the cell density u, and a reaction diffusion equation for the chemoattrac-
tant concentration ¢. It reads

Ou = div(Vu™ —u-Vo) z €2, t>0,

—Ap =u— (u) x €N, t>0,

(PKS) (p(®))y =0 t >0, (1)
ou=0,p=0 r €I, t>0,
w(0,2) = ug(x) x € 2,
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where 2 C RY is an open bounded domain, v the outward unit normal vector to the boundary 92 and
m > 1. An important parameter in this model is the total mass M of cells, which is formally conserved
through the evolution:

M= () = |—!12‘ /u(t,m) dz = |—!12‘ /uo(aj) dz. @)

Several studies have revealed that the dynamics of (1) depend sensitively on the parameters N, m and M.
More precisely, if N =2 and m = 1, it is well-known that the solutions of (1) may blow up in finite time if
M is sufficiently large (see [18,16]) while solutions are global in time for M sufficiently small [18], see also
the survey articles [4,11].

The situation is very different when m = 1 and N # 2. In fact, if N = 1, there is global existence of
solutions of (1) whatever the value of the mass of initial data M, see [8] and the references therein. If N > 3,
for all M > 0, there are initial data ug with mass M for which the corresponding solutions of (1) explode in
finite time (see [16]). Thus, in dimension N > 3 and m = 1, the threshold phenomenon does not take place
as in dimension 2, but we expect the same phenomenon when N > 3 and m is equal to the critical value
m=me= % More precisely, we consider a more general version of (1) where the first equation of (1)
is replaced by

Oyu = div(qb(u)Vu — quo), t>0, x €12,

and the diffusivity ¢ is a positive function in C([0,00[) which does not grow too fast at infinity. In [8],
the authors proved that there is a critical exponent such that, if the diffusion has a faster growth than the
one given by this exponent, solutions to (1) (with ¢(u) instead of mu™~!) exist globally and are uniformly
bounded, see also [6,15] for N = 2. More precisely, the main results in [8] read as follows:

o If ¢(u) = c(1 4+ u)? for all u > 0 and some ¢ > 0 and p > 1 — % then all the solutions of (1) are global
and bounded.
o If ¢(u) < c(1+u)? for all w > 0 and some ¢ > 0 and p < 1 — % then there exist initial data ug such that

lim ||u(., t)|| = o0, for some finite T > 0.
t—=T o0

Except for N = 2, the critical case m = W is not covered by the analysis of [8]. Recently, Cieslak and
Laurencot in [7] showed that if ¢(u) < ¢(1 +u)'~* and N > 3, there are solutions of (1) blowing up in
2(N—1)

N Y
have a threshold phenomenon similar to dimension N = 2 with m = 1, it remains to show that solutions

finite time when M exceeds an explicit threshold. In order to prove that, when N > 3 and m =

we

of (1) are global when M is small enough. The goal of this paper is to show that this is indeed true, see
Theorem 2.2 below.

By combining Theorem 2.2 with the blow-up result obtained in [7], we conclude that, for N > 3 and
m = %, there exists 0 < M; < My < oo such that the solutions of (1) are global if the mass M of
the initial data ug is in [0, M;), and may explode in finite time if M > Ms. An important open question
is whether M; = My when 2 is a ball in RY and ug is a radially symmetric function. Notice that, in the
radial case, this result is true when N = 2 and m = 1, and the threshold value of the mass for blow-up
is My = My = 8, see [6,16,17,19]. Again, for N = 2 and m = 1, but for regular, connected and bounded

domain, it has been shown that M; = 47 = % (see [17,16] and the references therein). Such a result does
2(N—1)
S

Still, in the whole space 2 = RY when the equation for ¢ in (1) is replaced by the Poisson equation
¢ = En *u, with E being the Poisson kernel, it has been shown in [9,5,2,21,22 3] that:

not seem to be known for N > 3 and m =
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