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This paper is concerned with asymptotic stability of Mindlin–Timoshenko plates
with dissipation of Kelvin–Voigt type on the equations for the rotation angles.
We prove that the corresponding evolution semigroup is analytic if a viscoelastic
damping is also effective over the equation for the transversal displacements. On the
contrary, if the transversal displacement is undamped, we show that the semigroup
is neither analytic nor exponentially stable. In addition, in the latter case, we show
that the solution decays polynomially and we prove that the decay rate found is
optimal.
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1. Introduction

In this paper we study the asymptotic stability of the following Mindlin–Timoshenko plate model

ρhwtt −KL1(w,ψ, ϕ) −D0Δwt = 0 in Ω × R
+, (1.1)

ρh3

12 ψtt −DL2(ψ,ϕ) + K

(
ψ + ∂w

∂x

)
−D1L2(ψt, ϕt) = 0 in Ω × R

+, (1.2)

ρh3

12 ϕtt −DL3(ϕ,ψ) + K

(
ϕ + ∂w

∂y

)
−D1L3(ϕt, ψt) = 0 in Ω × R

+, (1.3)
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where Ω is a bounded domain of R2 with Lipschitz boundary Γ = ∂Ω, and L1, L2, L3 are coupling terms
defined by

L1(w,ψ, ϕ) = ∂

∂x

(
ψ + ∂w

∂x

)
+ ∂

∂y

(
ϕ + ∂w

∂y

)
, (1.4)

L2(ψ,ϕ) = ∂2ψ

∂x2 + 1 − μ

2
∂2ψ

∂y2 + 1 + μ

2
∂2ϕ

∂x∂y
, (1.5)

L3(ϕ,ψ) = ∂2ϕ

∂y2 + 1 − μ

2
∂2ϕ

∂x2 + 1 + μ

2
∂2ψ

∂x∂y
. (1.6)

This system models the vibrations of a thin plate with reference configuration Ω by taking into account
the displacements and rotations caused by the movement. The model was considered in Lagnese [9] and
Lagnese and Lions [10] with a comprehensive discussion about its mathematical modeling. Accordingly,
the parameters of the model have the following physical meanings. The unknowns w and (ψ,ϕ) represent
respectively, the transverse displacement of the reference surface and the rotation angles of the plate fila-
ments. The constants ρ, h, K, D are positive numbers which represent respectively, the mass density, plate
thickness, shear modulus and flexural rigidity. The constant μ is Poisson’s ratio which is taken in (0, 1/2).
The constants D0, D1 are nonnegative and related to the presence of damping mechanisms.

The interesting case is when we consider D0 = 0 and D1 > 0, and so we only have damping on the
rotation angles ψ and ϕ. We notice that the damping terms L2(ψt, ϕt) and L3(ϕt, ψt) correspond to the
ones of Kelvin–Voigt type. Indeed, materials with Kelvin–Voigt damping are characterized by having stress
proportional to strain and strain rate, that is,

σ = aε + b
∂ε

∂t
, a, b > 0. (1.7)

See for instance Bulíc̆ek et al. [3]. With respect to Mindlin–Timoshenko models the strain tensor corre-
sponding to rotation equations ψ and ϕ is given by

ε =
(

(∂ψ∂x + μ∂ϕ
∂y ) 1−μ

2 (∂ϕ∂x + ∂ψ
∂y )

1−μ
2 (∂ϕ∂x + ∂ψ

∂y ) (∂ϕ∂x + μ∂ψ
∂y )

)
. (1.8)

See for instance van Rensburg et al. [16]. Then, since the balance of the linear momentum is

ρ
∂2

∂t2
(ψ,ϕ) = c∇ · σ,

where c > 0 is a normalizing constant, we get from (1.7)–(1.8),

(
ρψtt

ρϕtt

)
= ac

(
∂2ψ
∂x2 + 1−μ

2
∂2ψ
∂y2 + 1+μ

2
∂2ϕ
∂x∂y

∂2ϕ
∂y2 + 1−μ

2
∂2ϕ
∂x2 + 1+μ

2
∂2ψ
∂x∂y

)
+ bc

(
∂2ψt

∂x2 + 1−μ
2

∂2ψt

∂y2 + 1+μ
2

∂2ϕt

∂x∂y

∂2ϕt

∂y2 + 1−μ
2

∂2ϕt

∂x2 + 1+μ
2

∂2ψt

∂x∂y

)
.

But this corresponds precisely to Eqs. (1.2)–(1.3), without coupling terms involving Eq. (1.1).
To the system (1.1)–(1.3) we add initial conditions

w(x, y, 0) = w0(x, y), wt(x, y, 0) = w1(x, y) in Ω,

ψ(x, y, 0) = ψ0(x, y), ψt(x, y, 0) = ψ1(x, y) in Ω,

ϕ(x, y, 0) = ϕ0(x, y), ϕt(x, y, 0) = ϕ1(x, y) in Ω, (1.9)
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