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In this paper we look at models of nonlocal (or anomalous) diffusion which are
defined on subsets of the lattice εZn, for some ε > 0, and ask if they can be ap-
proximated by continuum models. The answer is given by an operator semigroup
convergence theorem. As an application, we establish hypotheses under which a dis-
crete model of nonlocal diffusion satisfying an absorbing boundary condition has a
continuum limit which is conservative.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The study of nonlocal diffusion (also called anomalous diffusion) has recently emerged as an impor-
tant area of scientific research, with applications in such disparate areas as groundwater hydrology (see
Meerschaert and Sikorskii [11]), optimal search theory (Raposo et al. [12]), and financial market modeling
(Mantegna [10]). Roughly speaking, nonlocal diffusion occurs when a “particle” moves in a way similar
to a simple random walk but has different asymptotic properties because it occasionally takes very large
jumps. It is well known that, under appropriate hypotheses, simple random walks can be approximated by
continuum models governed by the heat equation (see Burdzy and Chen [3], Lin and Segel [9]). The aim of
this paper is to prove some related results for models of nonlocal diffusion.

As a starting point, consider the system of equations

d

dt
p(x, t) =

∑
y∈Zn\{x}

C(p(y, t) − p(x, t))
|y − x|n+α

, x ∈ Z
n (1)

where C > 0 and α ∈ (0, 2). The solution to this system gives the probability p(x, t) that a randomly moving
particle is at the point x at time t, given an appropriate initial condition and given that the position Xt of
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the particle at time t is a continuous time Markov chain with transition probabilities given by

P(Xt+s = y|Xt = x) = sC
|y − x|n+α

+ o(s).

For a given ε > 0, if we rescale space and time so that the movement of the particle is described by X(ε),
where X

(ε)
t = εXε−αt, then one can easily verify that the probability pε(x, t) of finding the particle at x at

time t satisfies

d

dt
pε(x, t) =

∑
y∈εZn\{x}

C(pε(y, t) − pε(x, t))εn

|y − x|n+α
, x ∈ εZn. (2)

The results of Husseini and Kassmann [7] show that as ε → 0, X(ε) converges to a stochastic process
governed by a fractional diffusion equation.

A natural generalization of (2) for subsets E of εZn is the system

d

dt
p(x, t) =

∑
y∈E\{x}

C(p(y, t) − p(x, t))εn

|y − x|n+α
, x ∈ E. (3)

This model has appeared in certain applied contexts (as a special case of the model of human mobility in
Brockmann [2] and as a model of anomalous diffusion in Condat, Rangel and Lamberti [4]). In what follows
we will study this model, as well as an altered version involving an absorbing boundary condition. We will
give hypotheses under which they converge, in a sense to be made precise in the next section, as ε → 0.
This is a continuation of previous work with Seidman in [15].

2. Formal construction of the models and statement of the main results

To motivate all the definitions below, let us briefly summarize the elements of the argument to follow.
Given a lattice εZn and a bounded open set U ⊂ R

n, we consider a family of n-dimensional cubes S1, . . . , Sm

which cover U . We choose the cubes so that each one is centered at a lattice point in εZn, has non-empty
intersection with U , and has volume εn. Letting zi denote the lattice point at the center of Si, δzi denote the
Dirac measure centered at zi, and 1Si

denote the characteristic function for Si, we see that each probability
measure μ =

∑m
i=1 ciδzi on {z1, . . . , zm} can be associated with a probability density v = 1

εn

∑m
i=1 ci1Si

on
⋃m

i=1 Si, which satisfies μ({zi}) =
∫
Si

v(x) dx for all i. Using this correspondence, we can identify the
transition semigroup of a given Markov chain on {z1, . . . , zm} with a semigroup acting on a space of piecewise
constant functions g :

⋃m
i=1 Si → R. For sufficiently small ε, the latter semigroup will approximate some

limiting semigroup acting on L2(U), and this is the continuum-limit model.
We can now proceed with the detailed construction of the models. In everything that follows, α ∈ (0, 2),

C is a positive constant and (εk)k∈N is a sequence of positive real numbers such that εk ↓ 0. We will assume
U is a bounded open subset of Rn satisfying the segment property: for each x contained in the boundary
∂U of U , there is a neighborhood Nx of x in R

n and a vector yx, distinct from the zero vector 0, such
that z + tyx ∈ U for every z ∈ U ∩Nx and t ∈ (0, 1). (All bounded Lipschitz open sets satisfy the segment
property, see Grisvard [6, Theorem 1.2.2.2].) We assume in addition that

lim
ξ↓0

λ
({

x ∈ R
n: d(x, ∂U) < ξ

})
= 0

where λ denotes the Lebesgue measure on R
n. For each k, fix a bijection N → εkZ

n : i �→ zki. Define the
cube
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