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A general theory for coupled cell systems was formulated recently by I. Stewart,
M. Golubitsky and their collaborators. In their theory, a coupled cell system is a
network of interacting dynamical systems whose coupling architecture is expressed
by a directed graph called a coupled cell network. An equivalence relation on cells in
a regular network (a coupled cell network with identical nodes and identical edges)
determines a new network called quotient network by identifying cells in the same
equivalence class and determines a quotient system as well. In this paper we develop
an idea of reducibility of bifurcations in coupled cell systems associated with regular
networks. A bifurcation of equilibria from subspace where states of all cells are equal
is called a synchrony-breaking bifurcation. We say that a synchrony-breaking steady-
state bifurcation is reducible in a coupled cell system if any bifurcation branch for the
system is lifted from those for some quotient system. First, we give the complete
classification of codimension-one synchrony-breaking steady-state bifurcations in
1-input regular networks (where each cell receives only one edge). Second, we show
that under a mild condition on the multiplicity of critical eigenvalues, codimension-
one synchrony-breaking steady-state bifurcations in generic coupled cell systems
associated with an n-cell coupled cell network with Dn symmetry, a regular network,
is reducible for n > 2.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

A general theory for coupled cell systems was introduced recently in I. Stewart et al. [6]. Since then the
authors and their collaborators have been releasing many papers related to the theory. By their formulation
a coupled cell system is a system of coupled ODEs whose coupling information is given by a coupled cell
network that is essentially a directed graph whose nodes (or cells) represent states that evolve in time
and whose edges (or couplings) represent interactions between those states. See [3,5,6] for more precise
formulation.

In [1] the authors considered synchrony-breaking bifurcations in coupled cell systems, which is an analogue
of the symmetry-breaking bifurcations in systems with symmetry. Such synchrony-breaking bifurcations are
the main subject of this paper. We shall recall them briefly in the following paragraphs based on [1].
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Fig. 1. n-Cell bidirectional ring (BRn).

In this paper we study codimension-one synchrony-breaking bifurcations of steady-state solutions in
coupled cell systems. We focus on a special class of coupled cell networks called regular networks, in which
all cells are identical and couplings are also identical, in particular each cell has the same number of incoming
edges called “inputs”. For a regular network, define an associated ODE called an admissible vector field to
the regular network as follows: Since the total number of cells is finite, we can enumerate the cells and let
name the cells after its numbers. Let xj ∈ R

k be the state variable of the j-th cell (or cell j), where k is the
dimension of the internal dynamics in each cell, which is assumed to be identical. Then the j-th component
of the admissible vector field has the form

ẋj = f(xj , xσj(1), . . . , xσj(v)), j = 1, . . . , n, (1.1)

where the cell j receives inputs from the cells σj(1), . . . , σj(v). The σj(i)s are allowed to be equal to each
other and even to j. The number v is called the valency of the network and it is constant for any choice of the
cell j because each cell has the same number of inputs. The overbar indicates that the coupling coordinates
are invariant under permutations of the coupling cells. This invariance is assumed, since we assume a unique
type of coupling. Since there is only one type of node, we assume that the function f :Rk × (Rk)v → R

k is
independent of j.

Example (n-Cell bidirectional ring). Consider the n-cell regular network with valency 2, called a bidirectional
ring, which is shown in Fig. 1.

The corresponding admissible vector field takes the form⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ1 = f(x1, x2, xn)
ẋ2 = f(x2, x3, x1)

...
ẋn = f(xn, x1, xn−1)

(1.2)

where f :Rk × (Rk)2 → R
k satisfies f(a, b, c) = f(a, c, b).

We say that a coupled cell system exhibits synchrony, if two or more cells behave identically. A polydiago-
nal is a subspace Δ of the phase space (Rk)n of coupled cell system which is defined by equalities among some
cell coordinates. A synchrony subspace is a polydiagonal Δ that is flow-invariant for every admissible vector
field associated with the coupled cell network. It is obvious that the subspace Δ0 = {(x, . . . , x) ∈ (Rk)n}
given by setting all coordinates equal in a regular network yields a synchrony subspace. This Δ0 is called
the completely synchronous subspace.

We assume that an admissible vector field F has a completely synchronous equilibrium X0 ∈ Δ0. Let
Ec = Ec

F (X0) be the center subspace of (dF )X0 . We say that the equilibrium X0 has a synchrony-breaking
bifurcation, if Ec \ Δ0 �= ∅.
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